Page 40 - 《精细化工》2022年第12期
P. 40
·2406· 精细化工 FINE CHEMICALS 第 39 卷
Chemistry Letters, 2019, 17(2): 655-682. [31] PICHLER M, SZLACHETKA J, CASTELLI I E, et al.
[13] ZHAO Z, WANG D D, GAO R, et al. Magnetic-field-stimulated Determination of conduction and valence band electronic structure of
efficient photocatalytic N 2 fixation over defective BaTiO 3 perovskites LaTiO xN y thin film[J]. Chemistry Sustainability Energy and Materials,
[J]. Angewandte Chemie, 2021, 133(21): 12017-12025. 2017, 10(9): 2099-2106.
[14] LI J L, ZHAO Y X, XIA M Y, et al. Highly efficient charge transfer [32] FERRIDAY T B, MIDDLETON P H, KOLHE M L. Review of the
at 2D/2D layered P-La 2Ti 2O 7/Bi 2WO 6 contact heterojunctions for hydrogen evolution reaction-A basic approach[J]. Energies, 2021,
upgraded visible-light-driven photocatalysis[J]. Applied Catalysis B: 14(24): 8535.
Environmental, 2020, 261: 118244. [33] ZHANG Y K, TIAN Y, ZHANG Z Q, et al. Magnetic properties and
[15] ZHANG G, LIU G, WANG L Z, et al. Inorganic perovskite giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic
photocatalysts for solar energy utilization[J]. Chemical Society Gd 2MgTiO 6 double perovskite oxide[J]. Acta Materialia, 2022: 117669.
Reviews, 2016, 45(21): 5951-5984. [34] QU N R, LI Z P. A novel wet-chemical route for synthesis of
[16] WANG H F, ZHANG Q Q, QIU M Q, et al. Synthesis and multiferroic AMnO 3 (A = Gd, Tb, Dy) particles and its structural,
application of perovskite-based photocatalysts in environmental optical and magnetic properties[J]. Journal of Superconductivity and
remediation: A review[J]. Journal of Molecular Liquids, 2021, 334: Novel Magnetism, 2018, 31(9): 2869-2877.
116029. [35] CAI S Y, YU S, WAN W C, et al. Self-template synthesis of ATiO 3
[17] LI X, ZHAO H T, LIANG J, et al. A-site perovskite oxides: An (A = Ba, Pb and Sr) perovskites for photocatalytic removal of NO[J].
emerging functional material for electrocatalysis and photocatalysis RSC Advances, 2017, 7(44): 27397-27404.
[J]. Journal of Materials Chemistry A, 2021, 9(11): 6650-6670. [36] KUZNETSOV D A, HAN B, YU Y, et al. Tuning redox transitions
[18] WANG H C, SCHMIDT J, BOTTI S, et al. A high-throughput study via inductive effect in metal oxides and complexes, and implications
of oxynitride, oxyfluoride and nitrofluoride perovskites[J]. Journal of in oxygen electrocatalysis[J]. Joule, 2018, 2(2): 225-244.
Materials Chemistry A, 2021, 9(13): 8501-8513. [37] TAN H, JI Q Q, WANG C, et al. Asymmetrical π back-donation of
4+
6+
[19] BAI Y, LIU C L, SHAN Y Y, et al. Metal-organic frameworks hetero-dicationic Mo -Mo pairs for enhanced electrochemical
nanocomposites with different dimensionalities for energy conversion nitrogen reduction[J]. Nanoscience Research, 2022, 15(4): 3010-3016.
and storage[J]. Advanced Energy Materials, 2022, 12(4): 2100346. [38] JÁCOME-ACATITLA G, ÁLVAREZ-LEMUS M, LÓPEZ-GONZÁLEZ
[20] WEI K X, FARAJ Y, YAO G, et al. Strategies for improving R, et al. Photodegradation of 4-chloropehol in aqueous media using
perovskite photocatalysts reactivity for organic pollutants degradation: LaBO 3 (B = Fe, Mn, Co) perovskites: Study of the influence of the
A review on recent progress[J]. Chemical Engineering Journal, 2021, transition metal ion in the photocatalytic activity[J]. Journal of
414: 128783. Photochemistry and Photobiology A: Chemistry, 2020, 390: 112330.
[21] YAFAROVA L V, CHISLOVA I V, ZEVREVA I A, et al. Sol-gel [39] YIN X L, WANG S, WANG B Y, et al. Perovskite-type LaMn 1–xB xO 3+δ
synthesis and investigation of catalysts on the basis of perovskite- (B = Fe, Co and Ni) as oxygen carriers for chemical looping steam
type oxides GdMO 3 (M=Fe, Co)[J]. Journal of Sol-Gel Science and methane reforming[J]. Chemical Engineering Journal, 2021, 422:
Technology, 2019, 92(2): 264-272. 128751.
[22] DEDECKER K, GRANCIINI G. Dealing with lead in hybrid [40] SHI R, WATERHOUSE G I N, ZHANG T R. Recent progress in
perovskite: A challenge to tackle for a bright future of this photocatalytic CO 2 reduction over perovskite oxides[J]. Solar Rapid
technology?[J]. Advanced Energy Materials, 2020, 10(31): 2001471. Research Letters, 2017, 1(11): 1700126.
[23] RUBEL M H K, TAKEI T, KUMADA N, et al. Hydrothermal [41] LIU Y, WANG W, XU X M, et al. Recent advances in anion-doped
synthesis, crystal structure, and superconductivity of a double- metal oxides for catalytic applications[J]. Journal of Materials
perovskite Bi oxide[J]. Chemistry of Materials, 2016, 28(2): Chemistry A, 2019, 7(13): 7280-7300.
459-465. [42] XIE L B, LIU X H, CHANG J, et al. Enhanced redox activity and
[24] TAREEN A K, PRIYANGA G S, BEHARA S, et al. Mixed ternary oxygen vacancies of perovskite triggered by copper incorporation for
transition metal nitrides: A comprehensive review of synthesis, the improvement of electro-Fenton activity[J]. Chemical Engineering
electronic structure, and properties of engineering relevance[J]. Journal, 2022, 428: 131352.
Progress in Solid State Chemistry, 2019, 53: 1-26. [43] ZHUANG Z C, LI Y H, YU R H, et al. Reversely trapping atoms
[25] CHIEN S W C, NG D Q, KUMAR D, et al. Investigating the effects from a perovskite surface for high-performance and durable fuel cell
of various synthesis routes on morphological, optical, cathodes[J]. Nature Catalysis, 2022, 5(4): 300-310.
photoelectrochemical and photocatalytic properties of single-phase [44] LI F T, LIU Y, LIU R H, et al. Preparation of Ca-doped LaFeO 3
perovskite BiFeO 3[J]. Journal of Physics and Chemistry of Solids, nanopowders in a reverse microemulsion and their visible light
2022, 160: 110342. photocatalytic activity[J]. Materials Letters, 2010, 64(2): 223-225.
[26] WANG N, FUH J Y H, DHRRN S T, et al. Synthesis methods of [45] WU G L, LI P, XU D B, et al. Hydrothermal synthesis and
functionalized nanoparticles: A review[J]. Bio-Design and Manufacturing, visible-light-driven photocatalytic degradation for tetracycline of
2021, 4(2): 379-404. Mn-doped SrTiO 3 nanocubes[J]. Applied Surface Science, 2015, 333:
[27] MAKSOUD M I A A, FAHIM R A, BEDIR A G, et al. Engineered 39-47.
magnetic oxides nanoparticles as efficient sorbents for wastewater [46] OEHLER F, EBBINGHAUS S G. Photocatalytic properties of
remediation: A review[J]. Environmental Chemistry Letters, 2022, CoO x-loaded nano-crystalline perovskite oxynitrides ABO 2N (A =
20: 519-562. Ca, Sr, Ba, La; B = Nb, Ta)[J]. Solid State Sciences, 2016, 54: 43-48.
[28] YOUSEFI M, RANJBAR M. Ultrasound and microwave-assisted [47] ZHANG Y K, JIN Z L. Effective electron-hole separation over a
Co-precipitation synthesis of La 0.75Sr 0.25MnO 3 perovskite nanoparticles controllably constructed WP/UiO-66/CdS heterojunction to achieve
from a new lanthanum( Ⅲ ) coordination polymer precursor[J]. efficiently improved visible-light-driven photocatalytic hydrogen
Journal of Inorganic and Organometallic Polymers and Materials, evolution[J]. Physical Chemistry Chemical Physics, 2019, 21(16):
2017, 27(3): 633-640. 8326-8341.
[29] HUANG F, SUN X C, ZHENG Y, et al. Facile coprecipitation [48] WANG S, BAI L M, AO X L. Preparation and photocatalytic
synthesis of La 0. 6Sr 0. 4MnO 3 perovskites with high surface area[J]. application of a S, Nd double doped nano-TiO 2 photocatalyst[J].
Materials Letters, 2018, 210: 287-290. Royal Society of Chemistry Advances, 2018, 8(64): 36745-36753.
[30] SCHARNBERG A R A, DE LORETO A C, ALVES A K. Optical and [49] WU H, TAN H L, TOE C Y, et al. Photocatalytic and
structural characterization of Bi 2Fe xNbO 7 nanoparticles for photoelectrochemical systems: Similarities and differences[J].
environmental applications[J]. Emerging Science Journal, 2020, 4(1): Advanced Materials, 2020, 32(18): 1904717.
11-17. [50] PARIDA K M, REDDY K H, MARTHA S, et al. Fabrication of