Page 40 - 《精细化工》2022年第12期
P. 40

·2406·                            精细化工   FINE CHEMICALS                                 第 39 卷

                 Chemistry Letters, 2019, 17(2): 655-682.      [31]  PICHLER M, SZLACHETKA J, CASTELLI I  E,  et al.
            [13]  ZHAO Z, WANG  D D, GAO R,  et al. Magnetic-field-stimulated   Determination of conduction and valence band electronic structure of
                 efficient photocatalytic N 2 fixation over defective BaTiO 3 perovskites   LaTiO xN y thin film[J]. Chemistry Sustainability Energy and Materials,
                 [J]. Angewandte Chemie, 2021, 133(21): 12017-12025.     2017, 10(9): 2099-2106.
            [14]  LI J L, ZHAO Y X, XIA M Y, et al. Highly efficient charge transfer   [32]  FERRIDAY T B, MIDDLETON P H, KOLHE M L. Review of the
                 at 2D/2D layered  P-La 2Ti 2O 7/Bi 2WO 6 contact heterojunctions for   hydrogen evolution reaction-A basic approach[J]. Energies, 2021,
                 upgraded visible-light-driven photocatalysis[J]. Applied Catalysis B:   14(24): 8535.
                 Environmental, 2020, 261: 118244.             [33]  ZHANG Y K, TIAN Y, ZHANG Z Q, et al. Magnetic properties and
            [15]  ZHANG G,  LIU G,  WANG L Z,  et al. Inorganic perovskite   giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic
                 photocatalysts for solar energy utilization[J]. Chemical Society   Gd 2MgTiO 6 double perovskite oxide[J]. Acta Materialia, 2022: 117669.
                 Reviews, 2016, 45(21): 5951-5984.             [34]  QU N R,  LI Z P. A novel wet-chemical route for synthesis of
            [16]  WANG H F, ZHANG Q Q,  QIU  M Q,  et al. Synthesis and   multiferroic AMnO 3 (A  =  Gd,  Tb, Dy) particles and its structural,
                 application of perovskite-based photocatalysts in environmental   optical and magnetic properties[J]. Journal of Superconductivity and
                 remediation: A review[J]. Journal of Molecular Liquids, 2021, 334:   Novel Magnetism, 2018, 31(9): 2869-2877.
                 116029.                                       [35]  CAI S Y, YU S, WAN W C, et al. Self-template synthesis of ATiO 3
            [17]  LI X, ZHAO  H T, LIANG J,  et al. A-site perovskite oxides: An   (A = Ba, Pb and Sr) perovskites for photocatalytic removal of NO[J].
                 emerging functional material for electrocatalysis and photocatalysis   RSC Advances, 2017, 7(44): 27397-27404.
                 [J]. Journal of Materials Chemistry A, 2021, 9(11): 6650-6670.     [36]  KUZNETSOV D A, HAN B, YU Y, et al. Tuning redox transitions
            [18]  WANG H C, SCHMIDT J, BOTTI S, et al. A high-throughput study   via inductive effect in metal oxides and complexes, and implications
                 of oxynitride, oxyfluoride and nitrofluoride perovskites[J]. Journal of   in oxygen electrocatalysis[J]. Joule, 2018, 2(2): 225-244.
                 Materials Chemistry A, 2021, 9(13): 8501-8513.     [37]  TAN H, JI Q Q, WANG C, et al. Asymmetrical π back-donation of
                                                                                4+
                                                                                    6+
            [19]  BAI Y, LIU  C L, SHAN Y Y,  et al. Metal-organic frameworks   hetero-dicationic Mo -Mo  pairs for enhanced electrochemical
                 nanocomposites with different dimensionalities for energy conversion   nitrogen reduction[J]. Nanoscience Research, 2022, 15(4): 3010-3016.
                 and storage[J]. Advanced Energy Materials, 2022, 12(4): 2100346.     [38]  JÁCOME-ACATITLA G, ÁLVAREZ-LEMUS M, LÓPEZ-GONZÁLEZ
            [20]  WEI K X, FARAJ  Y,  YAO G,  et al. Strategies for  improving   R, et al. Photodegradation of 4-chloropehol in aqueous media using
                 perovskite photocatalysts reactivity for organic pollutants degradation:   LaBO 3 (B = Fe, Mn, Co) perovskites: Study of the influence of the
                 A review on recent progress[J]. Chemical Engineering Journal, 2021,   transition metal ion in the photocatalytic  activity[J]. Journal of
                 414: 128783.                                      Photochemistry and Photobiology A: Chemistry, 2020, 390: 112330.
            [21]  YAFAROVA  L V,  CHISLOVA I V, ZEVREVA I A,  et al. Sol-gel   [39]  YIN X L, WANG S, WANG B Y, et al. Perovskite-type LaMn 1–xB xO 3+δ
                 synthesis and  investigation  of catalysts on  the basis of perovskite-   (B = Fe, Co and Ni) as oxygen carriers for chemical looping steam
                 type oxides GdMO 3 (M=Fe, Co)[J]. Journal of Sol-Gel Science and   methane reforming[J]. Chemical Engineering Journal, 2021, 422:
                 Technology, 2019, 92(2): 264-272.                 128751.
            [22]  DEDECKER K,  GRANCIINI G. Dealing with lead in hybrid   [40]  SHI R, WATERHOUSE G I N, ZHANG T R. Recent progress in
                 perovskite: A challenge to tackle for a bright future of this   photocatalytic CO 2 reduction over perovskite oxides[J]. Solar Rapid
                 technology?[J]. Advanced Energy Materials, 2020, 10(31): 2001471.     Research Letters, 2017, 1(11): 1700126.
            [23]  RUBEL M  H K,  TAKEI T,  KUMADA N,  et al. Hydrothermal   [41]  LIU Y, WANG W, XU X M, et al. Recent advances in anion-doped
                 synthesis, crystal structure, and  superconductivity of  a double-   metal oxides for  catalytic applications[J]. Journal of Materials
                 perovskite Bi oxide[J]. Chemistry of Materials, 2016, 28(2):   Chemistry A, 2019, 7(13): 7280-7300.
                 459-465.                                      [42]  XIE L B, LIU X H, CHANG J, et al. Enhanced redox activity and
            [24]  TAREEN A K, PRIYANGA G S, BEHARA S, et al. Mixed ternary   oxygen vacancies of perovskite triggered by copper incorporation for
                 transition metal nitrides: A comprehensive review of synthesis,   the improvement of electro-Fenton activity[J]. Chemical Engineering
                 electronic structure, and properties  of engineering relevance[J].   Journal, 2022, 428: 131352.
                 Progress in Solid State Chemistry, 2019, 53: 1-26.     [43]  ZHUANG Z C, LI Y H, YU R H, et al. Reversely trapping atoms
            [25]  CHIEN S W C, NG D Q, KUMAR D, et al. Investigating the effects   from a perovskite surface for high-performance and durable fuel cell
                 of  various  synthesis  routes  on  morphological,  optical,  cathodes[J]. Nature Catalysis, 2022, 5(4): 300-310.
                 photoelectrochemical and photocatalytic properties of  single-phase   [44]  LI F T, LIU  Y, LIU R H,  et al. Preparation of Ca-doped LaFeO 3
                 perovskite BiFeO 3[J]. Journal of Physics and Chemistry of Solids,   nanopowders in a reverse  microemulsion and their visible light
                 2022, 160: 110342.                                photocatalytic activity[J]. Materials Letters, 2010, 64(2): 223-225.
            [26]  WANG  N, FUH J  Y H, DHRRN S T,  et al. Synthesis methods of   [45]  WU G L, LI P, XU D B,  et al. Hydrothermal synthesis and
                 functionalized nanoparticles: A review[J]. Bio-Design and Manufacturing,   visible-light-driven photocatalytic degradation for tetracycline of
                 2021, 4(2): 379-404.                              Mn-doped SrTiO 3 nanocubes[J]. Applied Surface Science, 2015, 333:
            [27]  MAKSOUD M I A A, FAHIM R A, BEDIR A G, et al. Engineered   39-47.
                 magnetic oxides nanoparticles as efficient sorbents for wastewater   [46]  OEHLER F, EBBINGHAUS S G.  Photocatalytic properties of
                 remediation: A review[J]. Environmental Chemistry Letters, 2022,   CoO x-loaded nano-crystalline perovskite oxynitrides ABO 2N (A =
                 20: 519-562.                                      Ca, Sr, Ba, La; B = Nb, Ta)[J]. Solid State Sciences, 2016, 54: 43-48.
            [28]  YOUSEFI M, RANJBAR M. Ultrasound and microwave-assisted   [47]  ZHANG Y K, JIN Z L. Effective  electron-hole separation over a
                 Co-precipitation synthesis of La 0.75Sr 0.25MnO 3 perovskite nanoparticles   controllably constructed WP/UiO-66/CdS  heterojunction  to achieve
                 from a new lanthanum( Ⅲ ) coordination  polymer precursor[J].   efficiently improved visible-light-driven photocatalytic  hydrogen
                 Journal of Inorganic and Organometallic Polymers and Materials,   evolution[J]. Physical Chemistry Chemical Physics, 2019, 21(16):
                 2017, 27(3): 633-640.                             8326-8341.
            [29]  HUANG F, SUN  X C, ZHENG  Y,  et al. Facile coprecipitation   [48]  WANG S, BAI L M, AO X L. Preparation and  photocatalytic
                 synthesis of La 0. 6Sr 0. 4MnO 3 perovskites with high surface  area[J].   application of a S, Nd double doped nano-TiO 2 photocatalyst[J].
                 Materials Letters, 2018, 210: 287-290.            Royal Society of Chemistry Advances, 2018, 8(64): 36745-36753.
            [30]  SCHARNBERG A R A, DE LORETO A C, ALVES A K. Optical and   [49]  WU H, TAN H L,  TOE C  Y,  et al. Photocatalytic  and
                 structural characterization of Bi 2Fe xNbO 7 nanoparticles for   photoelectrochemical systems: Similarities and differences[J].
                 environmental applications[J]. Emerging Science Journal, 2020, 4(1):   Advanced Materials, 2020, 32(18): 1904717.
                 11-17.                                        [50]  PARIDA K M,  REDDY  K H, MARTHA S,  et al. Fabrication of
   35   36   37   38   39   40   41   42   43   44   45