Page 64 - 《精细化工》2022年第2期
P. 64

·268·                             精细化工   FINE CHEMICALS                                 第 39 卷

                (5)在 Ti 3 C 2 /TiO 2 异质结中,Ti 3 C 2 的高电导率       [16]  SAJID M M, KHAN S B, JAVED Y, et al. Bismuth vanadate/MXene
                                                                   (BiVO 4/Ti 3C 2)  heterojunction composite: Enhanced  interfacial
            以及与 TiO 2 界面形成的肖特基势垒显著地提高了光
                                                                   control charge transfer for highly efficient visible light photocatalytic
            生电子-空穴对的分离率,使其在降解 AF 过程中光                              activity[J]. Environmental Science  and Pollution Research, 2021,
                                                                   28(27): 13315.
            催化性能得到了显著的提高,本研究揭示了 Ti 3 C 2
                                                               [17]  YANG J X, YU W B, LI C F, et al. PtO nanodots promoting Ti 3C 2
            对光催化性能提高的增强机制,并为 MXene 材料在                             MXene  in-situ converted  Ti 3C 2/TiO 2  composites for photocatalytic
            光催化领域中的应用提供了相关参考。                                      hydrogen production[J]. Chemical  Engineering Journal, 2021,
                                                                   420(Part1): 129695.
            参考文献:                                              [18]  QIAN J, ZHAO S, DANG W Q,  et al. Photocatalytic nitrogen
                                                                   reduction by Ti 3C 2 MXene derived oxygen vacancy-rich C/TiO 2[J].
            [1]   FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a   Advanced Sustainable Systems, 2021, 5(4): 2000282.
                 semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.   [19]  WANG B, WANG M Y, LIU F Y, et al. Ti 3C 2: An ideal co-catalyst?[J].
            [2]   JIANG T Q, NAN F, ZHOU J, et al. Enhanced photocatalytic  and   Angewandte Chemie International Edition, 2020, 132(5): 1930-1934.
                 photoelectrochemical performance of g-C 3N 4/BiVO 4 heterojunction:   [20]  SUN X L, ZHANG B T, YAN B Z, et al. Few-layer Ti 3C 2T x (T=O,
                 A combined experimental and theoretical study[J].  AIP Advances,   OH, or F) saturable absorber for a femtosecond bulk laser[J]. Optics
                 2019, 9(5): 055225.                               Letters, 2018, 43(16): 3862-3865.
            [3]   LI Y (李酽), SONG S (宋双), SHAN L X (单林曦), et al. Sonochemical   [21]  TANG Q J, SUN  Z X,  DENG S,  et al. Decorating g-C 3N 4 with
                 preparation and photocatalytic properties of  Au-modified nano   alkalinized Ti 3C 2 MXene for promoted photocatalytic CO 2 reduction
                 ZnO[J]. Fine Chemicals (精细化工), 2021, 38(8): 1597-1603.   performance[J]. Journal of Colloid and Interface Science, 2020, 564:
            [4]   KANG Z H, LV X D, WANG S Q, et al. Borate and iron hydroxide   406-417.
                 co-modified  BiVO 4  photoanodes  for  high-performance  [22]  LIAO Y, QIAN J, XIE  G,  et al. 2D-layered  Ti 3C 2 MXenes for
                 photoelectrochemical water oxidation[J]. Chemical Engineering   promoted synthesis of NH 3 on P25 photocatalysts[J]. Applied
                 Journal, 2021, 421(Part1): 129819.                Catalysis B: Environmental, 2020, 273: 119054.
            [5]   LIU S L (刘淑玲), YAN W (严薇), GUO J (郭洁), et al. Synthesis,   [23]  DU X, ZHAO T Y, XIU Z Y, et al. BiVO 4@ZnIn 2S 4/Ti 3C 2 MXene
                 characterization and photocatalytic properties of  In 2O 3/CdS   quantum dots assembly all-solid-state direct Z-scheme photocatalysts
                 composites[J]. Fine Chemicals (精细化工), 2018, 35(9): 1472-1477.   for efficient visible-light-driven overall water splitting[J]. Applied
            [6]   WANG S,  TANG B  W, YANG  W L,  et al. The  flower-like   Materials Today, 2020, 20: 100719.
                 heterostructured Fe 2O 3/MoS 2 coated by amorphous Si-oxyhydroxides:  An   [24]  LI K S, LU X Y, ZHANG Y, et al. Bi 3TaO 7/Ti 3C 2 heterojunctions for
                 effective surface  modification method for sulfide photocatalysts in   enhanced photocatalytic removal of  water-borne contaminants[J].
                 photo-Fenton reaction[J]. Journal of Alloys and Compounds, 2019,   Environmental Research, 2020, 185: 109409.
                 784: 1099-1105.                               [25]  LI Y J, DENG X T, TIAN J, et al. Ti 3C 2 MXene-derived Ti 3C 2/TiO 2
            [7]   YIN S K, SUN L L, ZHOU Y J,  et al. Enhanced electron-hole   nanoflowers  for  noble-metal-free photocatalytic overall water
                 separation in SnS 2/Au/g-C 3N 4 embedded structure for efficient CO 2   splitting[J]. Applied Materials Today, 2018, 13: 217-227.
                 photoreduction[J]. Chemical Engineering Journal, 2021, 406: 126776.   [26]  XU C, YANG  F, DENG  B  J,  et al. Ti 3C 2/TiO 2 nanowires with
            [8]   JI T H (嵇天浩), ZHOU J (周吉). Advances in one-dimensional TiO 2   excellent photocatalytic performance for selective oxidation of
                 nanomaterials[J]. Fine Chemicals (精细化工), 2010, 27(7): 629-634.   aromatic  alcohols to aldehydes[J]. Journal of Catalysis, 2019, 383:
            [9]   HONG C S, CHU S Y, SU W C, et al. Dependence of the synthesis   1-12.
                 condition on the dielectric behaviors of the 0.75Pb(Fe 2/3W 1/3)   [27]  JIN S, HU Q K,  WANG  L B,  et al. Comment on “MoS 2/Ti 3C 2
                 O 3-0.25PbTiO 3 based ceramics[J]. Journal of Alloys and Compounds,   heterostructure for efficient visible-light  photocatalytic hydrogen
                 2008, 459(1): 328-332.                            generation”[J]. International Journal of Hydrogen Energy, 2020,
            [10]  YAN Y J, QIU X Q, WANG H, et al. Synthesis of titanate/anatase   45(24): 13559-13562.
                 composites with  highly photocatalytic decolorization of  dye under   [28]  WANG P Y,  LU  X X, BOYJOO Y,  et al. Pillar-free TiO 2/Ti 3C 2
                 visible light irradiation[J]. Journal of Alloys and Compounds, 2008,   composite with expanded interlayer spacing for high-capacity sodium
                 460(1/2): 491-495.                                ion batteries[J]. Journal of Power Sources, 2020, 451: 227756.
            [11]  ZHONG J B,  LI J Z, FENG F M,  et al. Improved photocatalytic   [29]  GE  Y H, LUO  H, HUANG J R,  et al. Visible-light-active TiO 2
                 performance of SiO 2-TiO 2 prepared with the assistance of SDBS[J].   photocatalyst for  efficient photodegradation of organic dyes[J].
                 Journal of Molecular Catalysis A: Chemical, 2012, 357: 101-105.   Optical Materials, 2021, 115: 111058.
            [12]  ZHAO J Y, LI Y R, NA P. Facile construction of carbon dots layer   [30]  OBLAK R, KETE M, TANGAR U L,  et al. Alternative  support
                 and oxygen vacancies simultaneously onto TiO 2 to enhance photor-  materials for titania photocatalyst towards degradation  of organic
                 eduction activity[J]. Chinese Journal of Chemistry, 2021, 39(5):   pollutants[J]. Journal of Water Process Engineering, 2018, 23: 142-150.
                 1310-1318.                                    [31]  WANG H, PENG R, HOOD Z D, et al. Titania composites with 2D
            [13]  ZHANG Y, YANG H, ZOU W. Small amount of TiO 2 modified SnO 2   transition metal  carbides as photocatalysts for hydrogen production
                 with enhanced photocatalytic performance toward the removal of   under visible-light irradiation[J]. ChemSusChem, 2016, 9(12): 1490-1497.
                 rhodamine B[J]. Micro & Nano Letters, 2020, 15(14): 1033-1037.   [32]  LOW  J  X,  ZHANG L Y, TONG T,  et al. TiO 2/MXene Ti 3C 2
            [14]  QIN J X, WANG  J, YANG J J,  et al. Metal organic framework   composite with excellent photocatalytic CO 2 reduction activity[J].
                 derivative-TiO 2 composite as efficient and durable photocatalyst for   Journal of Catalysis, 2018, 361: 255-266.
                 the degradation of  toluene[J]. Applied Catalysis B: Environmental,   [33]  MIAO Z M, WANG G L, ZHANG  X F,  et al. Oxygen vacancies
                 2020, 267: 118667.                                modified TiO 2/Ti 3C 2 derived from MXenes for enhanced
            [15]  REN Y W, HAN Y J, LI Z Y, et al. Ce and Er co-doped TiO 2 for rapid   photocatalytic degradation of organic pollutants: The crucial role of
                 bacteria-killing using visible light[J]. Bioactive Materials, 2020, 5(2):     oxygen vacancy to Schottky junction[J]. Applied Surface Science,
                 201-209.                                          2020, 528: 146929.
   59   60   61   62   63   64   65   66   67   68   69