Page 64 - 《精细化工》2022年第2期
P. 64
·268· 精细化工 FINE CHEMICALS 第 39 卷
(5)在 Ti 3 C 2 /TiO 2 异质结中,Ti 3 C 2 的高电导率 [16] SAJID M M, KHAN S B, JAVED Y, et al. Bismuth vanadate/MXene
(BiVO 4/Ti 3C 2) heterojunction composite: Enhanced interfacial
以及与 TiO 2 界面形成的肖特基势垒显著地提高了光
control charge transfer for highly efficient visible light photocatalytic
生电子-空穴对的分离率,使其在降解 AF 过程中光 activity[J]. Environmental Science and Pollution Research, 2021,
28(27): 13315.
催化性能得到了显著的提高,本研究揭示了 Ti 3 C 2
[17] YANG J X, YU W B, LI C F, et al. PtO nanodots promoting Ti 3C 2
对光催化性能提高的增强机制,并为 MXene 材料在 MXene in-situ converted Ti 3C 2/TiO 2 composites for photocatalytic
光催化领域中的应用提供了相关参考。 hydrogen production[J]. Chemical Engineering Journal, 2021,
420(Part1): 129695.
参考文献: [18] QIAN J, ZHAO S, DANG W Q, et al. Photocatalytic nitrogen
reduction by Ti 3C 2 MXene derived oxygen vacancy-rich C/TiO 2[J].
[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a Advanced Sustainable Systems, 2021, 5(4): 2000282.
semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. [19] WANG B, WANG M Y, LIU F Y, et al. Ti 3C 2: An ideal co-catalyst?[J].
[2] JIANG T Q, NAN F, ZHOU J, et al. Enhanced photocatalytic and Angewandte Chemie International Edition, 2020, 132(5): 1930-1934.
photoelectrochemical performance of g-C 3N 4/BiVO 4 heterojunction: [20] SUN X L, ZHANG B T, YAN B Z, et al. Few-layer Ti 3C 2T x (T=O,
A combined experimental and theoretical study[J]. AIP Advances, OH, or F) saturable absorber for a femtosecond bulk laser[J]. Optics
2019, 9(5): 055225. Letters, 2018, 43(16): 3862-3865.
[3] LI Y (李酽), SONG S (宋双), SHAN L X (单林曦), et al. Sonochemical [21] TANG Q J, SUN Z X, DENG S, et al. Decorating g-C 3N 4 with
preparation and photocatalytic properties of Au-modified nano alkalinized Ti 3C 2 MXene for promoted photocatalytic CO 2 reduction
ZnO[J]. Fine Chemicals (精细化工), 2021, 38(8): 1597-1603. performance[J]. Journal of Colloid and Interface Science, 2020, 564:
[4] KANG Z H, LV X D, WANG S Q, et al. Borate and iron hydroxide 406-417.
co-modified BiVO 4 photoanodes for high-performance [22] LIAO Y, QIAN J, XIE G, et al. 2D-layered Ti 3C 2 MXenes for
photoelectrochemical water oxidation[J]. Chemical Engineering promoted synthesis of NH 3 on P25 photocatalysts[J]. Applied
Journal, 2021, 421(Part1): 129819. Catalysis B: Environmental, 2020, 273: 119054.
[5] LIU S L (刘淑玲), YAN W (严薇), GUO J (郭洁), et al. Synthesis, [23] DU X, ZHAO T Y, XIU Z Y, et al. BiVO 4@ZnIn 2S 4/Ti 3C 2 MXene
characterization and photocatalytic properties of In 2O 3/CdS quantum dots assembly all-solid-state direct Z-scheme photocatalysts
composites[J]. Fine Chemicals (精细化工), 2018, 35(9): 1472-1477. for efficient visible-light-driven overall water splitting[J]. Applied
[6] WANG S, TANG B W, YANG W L, et al. The flower-like Materials Today, 2020, 20: 100719.
heterostructured Fe 2O 3/MoS 2 coated by amorphous Si-oxyhydroxides: An [24] LI K S, LU X Y, ZHANG Y, et al. Bi 3TaO 7/Ti 3C 2 heterojunctions for
effective surface modification method for sulfide photocatalysts in enhanced photocatalytic removal of water-borne contaminants[J].
photo-Fenton reaction[J]. Journal of Alloys and Compounds, 2019, Environmental Research, 2020, 185: 109409.
784: 1099-1105. [25] LI Y J, DENG X T, TIAN J, et al. Ti 3C 2 MXene-derived Ti 3C 2/TiO 2
[7] YIN S K, SUN L L, ZHOU Y J, et al. Enhanced electron-hole nanoflowers for noble-metal-free photocatalytic overall water
separation in SnS 2/Au/g-C 3N 4 embedded structure for efficient CO 2 splitting[J]. Applied Materials Today, 2018, 13: 217-227.
photoreduction[J]. Chemical Engineering Journal, 2021, 406: 126776. [26] XU C, YANG F, DENG B J, et al. Ti 3C 2/TiO 2 nanowires with
[8] JI T H (嵇天浩), ZHOU J (周吉). Advances in one-dimensional TiO 2 excellent photocatalytic performance for selective oxidation of
nanomaterials[J]. Fine Chemicals (精细化工), 2010, 27(7): 629-634. aromatic alcohols to aldehydes[J]. Journal of Catalysis, 2019, 383:
[9] HONG C S, CHU S Y, SU W C, et al. Dependence of the synthesis 1-12.
condition on the dielectric behaviors of the 0.75Pb(Fe 2/3W 1/3) [27] JIN S, HU Q K, WANG L B, et al. Comment on “MoS 2/Ti 3C 2
O 3-0.25PbTiO 3 based ceramics[J]. Journal of Alloys and Compounds, heterostructure for efficient visible-light photocatalytic hydrogen
2008, 459(1): 328-332. generation”[J]. International Journal of Hydrogen Energy, 2020,
[10] YAN Y J, QIU X Q, WANG H, et al. Synthesis of titanate/anatase 45(24): 13559-13562.
composites with highly photocatalytic decolorization of dye under [28] WANG P Y, LU X X, BOYJOO Y, et al. Pillar-free TiO 2/Ti 3C 2
visible light irradiation[J]. Journal of Alloys and Compounds, 2008, composite with expanded interlayer spacing for high-capacity sodium
460(1/2): 491-495. ion batteries[J]. Journal of Power Sources, 2020, 451: 227756.
[11] ZHONG J B, LI J Z, FENG F M, et al. Improved photocatalytic [29] GE Y H, LUO H, HUANG J R, et al. Visible-light-active TiO 2
performance of SiO 2-TiO 2 prepared with the assistance of SDBS[J]. photocatalyst for efficient photodegradation of organic dyes[J].
Journal of Molecular Catalysis A: Chemical, 2012, 357: 101-105. Optical Materials, 2021, 115: 111058.
[12] ZHAO J Y, LI Y R, NA P. Facile construction of carbon dots layer [30] OBLAK R, KETE M, TANGAR U L, et al. Alternative support
and oxygen vacancies simultaneously onto TiO 2 to enhance photor- materials for titania photocatalyst towards degradation of organic
eduction activity[J]. Chinese Journal of Chemistry, 2021, 39(5): pollutants[J]. Journal of Water Process Engineering, 2018, 23: 142-150.
1310-1318. [31] WANG H, PENG R, HOOD Z D, et al. Titania composites with 2D
[13] ZHANG Y, YANG H, ZOU W. Small amount of TiO 2 modified SnO 2 transition metal carbides as photocatalysts for hydrogen production
with enhanced photocatalytic performance toward the removal of under visible-light irradiation[J]. ChemSusChem, 2016, 9(12): 1490-1497.
rhodamine B[J]. Micro & Nano Letters, 2020, 15(14): 1033-1037. [32] LOW J X, ZHANG L Y, TONG T, et al. TiO 2/MXene Ti 3C 2
[14] QIN J X, WANG J, YANG J J, et al. Metal organic framework composite with excellent photocatalytic CO 2 reduction activity[J].
derivative-TiO 2 composite as efficient and durable photocatalyst for Journal of Catalysis, 2018, 361: 255-266.
the degradation of toluene[J]. Applied Catalysis B: Environmental, [33] MIAO Z M, WANG G L, ZHANG X F, et al. Oxygen vacancies
2020, 267: 118667. modified TiO 2/Ti 3C 2 derived from MXenes for enhanced
[15] REN Y W, HAN Y J, LI Z Y, et al. Ce and Er co-doped TiO 2 for rapid photocatalytic degradation of organic pollutants: The crucial role of
bacteria-killing using visible light[J]. Bioactive Materials, 2020, 5(2): oxygen vacancy to Schottky junction[J]. Applied Surface Science,
201-209. 2020, 528: 146929.