Page 118 - 《精细化工》2022年第3期
P. 118

·540·                             精细化工   FINE CHEMICALS                                 第 39 卷

            Ag 3 PO 4 更好的稳定性。                                      Ag 3PO 4/TiP 2O 7 composite photocatalyst with low Ag consumption[J].
                                                                   Advanced Powder Technology, 2017, 28(3): 1047-1053.
                (3)在 g-C 3 N 4 /Bi 2 MoO 6 /Ag 3 PO 4 复合材料降解
                                                               [17]  ZHANG H S, YU D,  WANG W,  et al. Multiple heterojunction
                                –
            TC 体系中,•OH 和•O 2 起主要作用。                                system of Bi 2MoO 6/WO 3/Ag 3PO 4  with enhanced visible-light
                                                                   photocatalytic performance towards dye degradation[J]. Advanced
                (4)g-C 3 N 4 /Bi 2 MoO 6 /Ag 3 PO 4 光催化活性高主要
                                                                   Powder Technology, 2019, 30(9): 1910-1919.
            归因于 g-C 3 N 4 、Bi 2 MoO 6 和 Ag 3 PO 4 之间形成异质结,     [18]  ALHOKBANY N S, MOUSA  R,  MU N,  et al. Fabrication of
            促进了光生电子和空穴的有效分离。                                       Z-scheme photocatalysts g-C 3N 4/Ag 3PO 4/chitosan for the photocatalytic
                                                                   degradation of ciprofloxacin[J]. International Journal of  Biological
                                                                   Macromolecules, 2020, 164: 3864-3872.
            参考文献:
                                                               [19]  LI T F, WEI H R, JING H Z, et al. Mechanisms for highly-efficient
            [1]   GOMEZPACHECO C V, SANCHEZPOLO M, RIVERA J,  et al.   mineralization of bisphenol A by heterostructured Ag 2WO 4/Ag 3PO 4
                 Tetracycline removal from waters by integrated technologies based   under simulated solar-light[J]. ACS Sustainable Chemistry &
                 on ozonation and biodegradation[J]. Chemical Engineering Journal,   Engineering, 2019,7(4): 4177-4185.
                 2013, 178: 115-121.                           [20]  TIAN  J,  CHEN D, CHEN C,  et al. Novel  Z-Scheme g-C 3N 4/
            [2]   CETECIOGLU Z,  LNCE B, GROS  M,  et al.  Chronic impact of   C@Bi 2MoO 6  composite with enhanced visible-light  photocatalytic
                 tetracycline on the biodegradation of  an organic substrate  mixture   activity for beta-naphthol degradation[J]. Separation and Purification
                 under anaerobic conditions[J]. Water Research, 2011, 47(9): 2959-   Technology, 2017, 183: 54-65.
                 2969.                                         [21]  ZHU P F, CHEN Y H, DUAN M, et al. Construction and mechanism
            [3]   KUMMERER K. Antibiotics in the aquatic environment—A review-   of a highly efficient and stable Z-scheme Ag 3PO 4/reduced graphene
                 Part I[J]. Chemosphere, 2009, 75(4): 417-434.     oxide/Bi 2MoO 6 visible-light photocatalyst[J]. Catalysis Science &
                                        +
            [4]   HU M, MENG Q, WANG X, et al. Ti 3 self-doped mesoporous black   Technology, 2018, 8(15): 3818-3832.
                 TiO 2/SiO 2/g-C 3N 4 sheets heterojunctions as remarkable visible-light   [22]  YU J  G,  WANG S H, LOW J X,  et al. Enhanced photocatalytic
                 driven photocatalysts[J]. Applied Catalysis B Environmental, 2018,   performance of direct Z-scheme g-C 3N 4-TiO 2 photocatalysts for the
                 226: 499-508.                                     decomposition of formaldehyde in air[J]. Physical Chemistry
            [5]   MARSCHALL R. Semiconductor composites: Trategies for enhancing   Chemical Physics, 2013, 15(39): 16883-16890.
                 charge carrier separation to improve photocatalytic activity[J].   [23]  ZHU C Z, WANG Y T, JANG Z J, et al. CeO 2 nanocrystal-modified
                 Advanced Functional Materials, 2014, 24(17): 2420-2440.   layered MoS 2/g-C 3N 4  as 0D/2D ternary composite for visible-light
            [6]   MAO D J, DING  S S, MENG L J,  et al. One-pot microemulsion-   photocatalytic hydrogen evolution: Interfacial consecutive multi-step
                 mediated synthesis of Bi-rich Bi 4O 5Br 2 with controllable morphologies   electron transfer and enhanced H 2O reactant adsorption[J]. Applied
                 and excellent visible-light photocatalytic removal of pollutants[J].   Catalysis B: Environmental, 2019, 259: 118072.
                 Applied Catalysis B Environmental, 2017, 207: 153-165.
                                                               [24]  SUN  Y  Y, WU J, MA T J,  et al. Synthesis  of C@Bi 2MoO 6
            [7]   IWASE A, YUN H N, ISHIGURO Y, et al. Reduced graphene oxide   nanocomposites with enhanced visible light photocatalytic activity[J].
                 as a solid-state electron mediator in Z-scheme photocatalytic water   Applied Surface Science, 2017, 403: 141-150.
                 splitting  under visible light[J]. Journal of the American  Chemical   [25]  LIU Y, YANY Z H, SONG P P, et al. Facile synthesis of Bi 2MoO 6/
                 Society, 2011, 133(29): 11054-11057.              ZnSnO 3 heterojunction with enhanced visible light photocatalytic
            [8]   XIAO X P, WEI J H, YANG Y, et al. Photoreactivity and mechanism   degradation of methylene blue[J]. Applied Surface Science, 2018,
                 of g-C 3N 4 and Ag co-modified Bi 2WO 6  microsphere under visible   430: 561-570.
                 light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2016,   [26]  XU Y S, ZHANG W D. Monodispersed Ag 3PO 4 nanocrystals loaded
                 4(6): 3017-3023.
            [9]   LEEJ Y, JO W K. Heterojunction-based two-dimensional N-doped   on the surface of spherical Bi 2MoO 6 with enhanced photocatalytic
                                                                   performance[J]. Dalton Transactions, 2013, 42(4): 1094-1101.
                 TiO 2/WO 3 composite architectures for photocatalytic treatment of   [27]  LI H P, LIU J Y, HOU W G, et al. Synthesis and characterization of
                 hazardous organic  vapor[J]. Journal of Hazardous Materials, 2016,   g-C 3N 4/Bi 2MoO 6  heterojunctions with enhanced visible light
                 314(15): 22-31.
            [10]  MENG Q  Q (孟庆强).  Preparation and study of Bi 2MoO 6 based   photocatalytic activity[J]. Applied Catalysis B Environmental, 2014,
                                                                   160: 89-97.
                 photocatalyst[D]. Harbin: Harbin Institute of Technology (哈尔滨工  [28]  DAN Y, WANG W F, PENG C, et al. Multiple heterojunction system
                 业大学), 2020.
            [11]  ZHEN Y Z, YANG C M, SHEN H D,  et al. Photocatalytic   of Bi 2MoO 6/WO 3/Ag 2WO 4 with enhanced visible-light photocatalytic
                 performance and mechanism insights of a S-scheme g-C 3N 4/Bi 2MoO 6   performance towards  dye degradation[J]. Advanced Powder
                 heterostructure in phenol  degradation and hydrogen evolution   Technology, 2019, 30(9): 1910-1919.
                 reactions under visible light[J]. Physical Chemistry Chemical Physics,   [29]  LI J Y, YU X, ZHU Y, et al. 3D-2D-3D BiOI/porous g-C 3N 4/graphene
                 2020, 22(45), 26278-26288.                        hydrogel composite photocatalyst with  synergy of adsorption-
            [12]  LEE S Y, JUNG N, SHIN D Y, et al. Self-healing Pd 3Au@Pt/C core-   photocatalysis in static and flow  systems[J]. Journal  of  Alloys and
                 shell electrocatalysts with substantially enhanced activity and durability   Compounds, 2021, 850: 156778.
                 towards  oxygen  reduction[J]. Applied Catalysis B Environmental,   [30]  SHEN K, GONDAL M A, SIDDIQUE R G,  et al. Preparation of
                 2017, 206: 666-674.                               ternary Ag/Ag 3PO 4/g-C 3N 4 hybrid photocatalysts and their enhanced
            [13]  TSANG C  A, TOBIN J, JIN X,  et al. BTZ-copolymer loaded   photocatalytic activity driven by visible light[J]. Chinese Journal of
                 graphene aerogel as new type green  and metal-free visible light   Catalysis, 2014, 35(1): 78-84.
                 photocatalyst[J]. Applied Catalysis B: Environmental, 2019, 240:   [31]  LIU X W, XU J J, LI Z Y, et al. Adsorption and visible-light-driven
                 50-63.                                            photocatalytic properties of Ag 3PO 4/WO 3 composites: A discussion
            [14]  BU X Y (卜鑫焱), HUANG Q  L (黄权龙), ZHAO X  L (赵西连),   of the mechanism[J]. Chemical Engineering Journal, 2019, 356: 22-
                 et al. Photocatalytic degradation of bisphenol A by WO 3/C/Ag 3PO 4   33.
                 composites[J]. Fine Chemicals (精细化工), 2021, 38(3): 496-503.   [32]  LI Y F, JIN R X,  FANG X,  et al.  In situ loading of Ag 2WO 4 on
            [15]  ZHENG Z, MENG J, AO X G, et al. Few-layer MoS 2 nanosheets-   ultrathin g-C 3N 4 nanosheets with  highly enhanced photocatalytic
                 deposited on Bi 2MoO 6 microspheres:  A Z-scheme  visible-light   performance[J]. Journal of Hazardous Materials, 2016, 313: 219-228.
                 photocatalyst with enhanced activity[J]. Catalysis Today, 2018, 315:   [33]  HUANG Y C, FAN W J, LONG B, et al. Visible light Bi 2S 3/Bi 2O 3/
                 67-78.                                            Bi 2O 2CO 3  photocatalyst for effective degradation of organic
            [16]  MENG X Y, HAO M J, SHI J Z, et al. Novel visible light response   pollutions[J]. Applied Catalysis B: Environmental, 2016, 185: 68-76.
   113   114   115   116   117   118   119   120   121   122   123