Page 118 - 《精细化工》2022年第3期
P. 118
·540· 精细化工 FINE CHEMICALS 第 39 卷
Ag 3 PO 4 更好的稳定性。 Ag 3PO 4/TiP 2O 7 composite photocatalyst with low Ag consumption[J].
Advanced Powder Technology, 2017, 28(3): 1047-1053.
(3)在 g-C 3 N 4 /Bi 2 MoO 6 /Ag 3 PO 4 复合材料降解
[17] ZHANG H S, YU D, WANG W, et al. Multiple heterojunction
–
TC 体系中,•OH 和•O 2 起主要作用。 system of Bi 2MoO 6/WO 3/Ag 3PO 4 with enhanced visible-light
photocatalytic performance towards dye degradation[J]. Advanced
(4)g-C 3 N 4 /Bi 2 MoO 6 /Ag 3 PO 4 光催化活性高主要
Powder Technology, 2019, 30(9): 1910-1919.
归因于 g-C 3 N 4 、Bi 2 MoO 6 和 Ag 3 PO 4 之间形成异质结, [18] ALHOKBANY N S, MOUSA R, MU N, et al. Fabrication of
促进了光生电子和空穴的有效分离。 Z-scheme photocatalysts g-C 3N 4/Ag 3PO 4/chitosan for the photocatalytic
degradation of ciprofloxacin[J]. International Journal of Biological
Macromolecules, 2020, 164: 3864-3872.
参考文献:
[19] LI T F, WEI H R, JING H Z, et al. Mechanisms for highly-efficient
[1] GOMEZPACHECO C V, SANCHEZPOLO M, RIVERA J, et al. mineralization of bisphenol A by heterostructured Ag 2WO 4/Ag 3PO 4
Tetracycline removal from waters by integrated technologies based under simulated solar-light[J]. ACS Sustainable Chemistry &
on ozonation and biodegradation[J]. Chemical Engineering Journal, Engineering, 2019,7(4): 4177-4185.
2013, 178: 115-121. [20] TIAN J, CHEN D, CHEN C, et al. Novel Z-Scheme g-C 3N 4/
[2] CETECIOGLU Z, LNCE B, GROS M, et al. Chronic impact of C@Bi 2MoO 6 composite with enhanced visible-light photocatalytic
tetracycline on the biodegradation of an organic substrate mixture activity for beta-naphthol degradation[J]. Separation and Purification
under anaerobic conditions[J]. Water Research, 2011, 47(9): 2959- Technology, 2017, 183: 54-65.
2969. [21] ZHU P F, CHEN Y H, DUAN M, et al. Construction and mechanism
[3] KUMMERER K. Antibiotics in the aquatic environment—A review- of a highly efficient and stable Z-scheme Ag 3PO 4/reduced graphene
Part I[J]. Chemosphere, 2009, 75(4): 417-434. oxide/Bi 2MoO 6 visible-light photocatalyst[J]. Catalysis Science &
+
[4] HU M, MENG Q, WANG X, et al. Ti 3 self-doped mesoporous black Technology, 2018, 8(15): 3818-3832.
TiO 2/SiO 2/g-C 3N 4 sheets heterojunctions as remarkable visible-light [22] YU J G, WANG S H, LOW J X, et al. Enhanced photocatalytic
driven photocatalysts[J]. Applied Catalysis B Environmental, 2018, performance of direct Z-scheme g-C 3N 4-TiO 2 photocatalysts for the
226: 499-508. decomposition of formaldehyde in air[J]. Physical Chemistry
[5] MARSCHALL R. Semiconductor composites: Trategies for enhancing Chemical Physics, 2013, 15(39): 16883-16890.
charge carrier separation to improve photocatalytic activity[J]. [23] ZHU C Z, WANG Y T, JANG Z J, et al. CeO 2 nanocrystal-modified
Advanced Functional Materials, 2014, 24(17): 2420-2440. layered MoS 2/g-C 3N 4 as 0D/2D ternary composite for visible-light
[6] MAO D J, DING S S, MENG L J, et al. One-pot microemulsion- photocatalytic hydrogen evolution: Interfacial consecutive multi-step
mediated synthesis of Bi-rich Bi 4O 5Br 2 with controllable morphologies electron transfer and enhanced H 2O reactant adsorption[J]. Applied
and excellent visible-light photocatalytic removal of pollutants[J]. Catalysis B: Environmental, 2019, 259: 118072.
Applied Catalysis B Environmental, 2017, 207: 153-165.
[24] SUN Y Y, WU J, MA T J, et al. Synthesis of C@Bi 2MoO 6
[7] IWASE A, YUN H N, ISHIGURO Y, et al. Reduced graphene oxide nanocomposites with enhanced visible light photocatalytic activity[J].
as a solid-state electron mediator in Z-scheme photocatalytic water Applied Surface Science, 2017, 403: 141-150.
splitting under visible light[J]. Journal of the American Chemical [25] LIU Y, YANY Z H, SONG P P, et al. Facile synthesis of Bi 2MoO 6/
Society, 2011, 133(29): 11054-11057. ZnSnO 3 heterojunction with enhanced visible light photocatalytic
[8] XIAO X P, WEI J H, YANG Y, et al. Photoreactivity and mechanism degradation of methylene blue[J]. Applied Surface Science, 2018,
of g-C 3N 4 and Ag co-modified Bi 2WO 6 microsphere under visible 430: 561-570.
light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2016, [26] XU Y S, ZHANG W D. Monodispersed Ag 3PO 4 nanocrystals loaded
4(6): 3017-3023.
[9] LEEJ Y, JO W K. Heterojunction-based two-dimensional N-doped on the surface of spherical Bi 2MoO 6 with enhanced photocatalytic
performance[J]. Dalton Transactions, 2013, 42(4): 1094-1101.
TiO 2/WO 3 composite architectures for photocatalytic treatment of [27] LI H P, LIU J Y, HOU W G, et al. Synthesis and characterization of
hazardous organic vapor[J]. Journal of Hazardous Materials, 2016, g-C 3N 4/Bi 2MoO 6 heterojunctions with enhanced visible light
314(15): 22-31.
[10] MENG Q Q (孟庆强). Preparation and study of Bi 2MoO 6 based photocatalytic activity[J]. Applied Catalysis B Environmental, 2014,
160: 89-97.
photocatalyst[D]. Harbin: Harbin Institute of Technology (哈尔滨工 [28] DAN Y, WANG W F, PENG C, et al. Multiple heterojunction system
业大学), 2020.
[11] ZHEN Y Z, YANG C M, SHEN H D, et al. Photocatalytic of Bi 2MoO 6/WO 3/Ag 2WO 4 with enhanced visible-light photocatalytic
performance and mechanism insights of a S-scheme g-C 3N 4/Bi 2MoO 6 performance towards dye degradation[J]. Advanced Powder
heterostructure in phenol degradation and hydrogen evolution Technology, 2019, 30(9): 1910-1919.
reactions under visible light[J]. Physical Chemistry Chemical Physics, [29] LI J Y, YU X, ZHU Y, et al. 3D-2D-3D BiOI/porous g-C 3N 4/graphene
2020, 22(45), 26278-26288. hydrogel composite photocatalyst with synergy of adsorption-
[12] LEE S Y, JUNG N, SHIN D Y, et al. Self-healing Pd 3Au@Pt/C core- photocatalysis in static and flow systems[J]. Journal of Alloys and
shell electrocatalysts with substantially enhanced activity and durability Compounds, 2021, 850: 156778.
towards oxygen reduction[J]. Applied Catalysis B Environmental, [30] SHEN K, GONDAL M A, SIDDIQUE R G, et al. Preparation of
2017, 206: 666-674. ternary Ag/Ag 3PO 4/g-C 3N 4 hybrid photocatalysts and their enhanced
[13] TSANG C A, TOBIN J, JIN X, et al. BTZ-copolymer loaded photocatalytic activity driven by visible light[J]. Chinese Journal of
graphene aerogel as new type green and metal-free visible light Catalysis, 2014, 35(1): 78-84.
photocatalyst[J]. Applied Catalysis B: Environmental, 2019, 240: [31] LIU X W, XU J J, LI Z Y, et al. Adsorption and visible-light-driven
50-63. photocatalytic properties of Ag 3PO 4/WO 3 composites: A discussion
[14] BU X Y (卜鑫焱), HUANG Q L (黄权龙), ZHAO X L (赵西连), of the mechanism[J]. Chemical Engineering Journal, 2019, 356: 22-
et al. Photocatalytic degradation of bisphenol A by WO 3/C/Ag 3PO 4 33.
composites[J]. Fine Chemicals (精细化工), 2021, 38(3): 496-503. [32] LI Y F, JIN R X, FANG X, et al. In situ loading of Ag 2WO 4 on
[15] ZHENG Z, MENG J, AO X G, et al. Few-layer MoS 2 nanosheets- ultrathin g-C 3N 4 nanosheets with highly enhanced photocatalytic
deposited on Bi 2MoO 6 microspheres: A Z-scheme visible-light performance[J]. Journal of Hazardous Materials, 2016, 313: 219-228.
photocatalyst with enhanced activity[J]. Catalysis Today, 2018, 315: [33] HUANG Y C, FAN W J, LONG B, et al. Visible light Bi 2S 3/Bi 2O 3/
67-78. Bi 2O 2CO 3 photocatalyst for effective degradation of organic
[16] MENG X Y, HAO M J, SHI J Z, et al. Novel visible light response pollutions[J]. Applied Catalysis B: Environmental, 2016, 185: 68-76.