Page 82 - 《精细化工》2022年第3期
P. 82

·504·                             精细化工   FINE CHEMICALS                                 第 39 卷

                 Biomedical Materials, 2011, 6(4): 045002.     [26]  CHI H J ( 迟宏 进 ). Preparation and properties  of  nano-ZnO
            [10]  LIU M S (刘梅森), HE W P (何唯平), CHEN S L (陈胜利). Effect   composite hydrogels[D]. Qinhuangdao: Yanshan University (燕山大
                 of stabilizer on the quality of soft ice flooding[J]. Food Science (食  学), 2019.
                 品科学), 2006, 5(11): 124-128.                   [27]  DENG W (邓伍). Preparation and study of UV resistant nano-ZnO
            [11]  DUAN S H (段善海), CHEN L Y (陈凌远), YE D H (叶暾昊), et al.   epoxy resin composites[D]. Chengdu: University of  Electronic
                 Study on compound emulsifying stabilizer of low calorie ice cream[J].   Science and Technology of China (电子科技大学), 2013.
                 Food Industry Technology (食品工业科技), 2007, 28(3): 187-190.   [28]  FU F Y, LI L Y, LIU L J, et al. Construction of cellulose based ZnO
            [12]  XU J Y, FAN  Z  W, DUAN  L J,  et al. A tough, stretchable, and   nanocomposite films with antibacterial properties  through one-step
                 extensively sticky hydrogel driven by  milk protein[J]. Polymer   coagulation[J]. ACS Applied Materials & Interfaces, 2015, 7(4):
                 Chemistry, 2018, 9(19): 2617-2624.                2597-2606.
            [13]  GUAN  L, YAN S,  LIU X, et al. Wearable strain sensors based on   [29]  YANG J W,  BAI  R B,  CHEN B  H,  et al. Hydrogel adhesion: A
                 casein-driven tough, adhesive and  anti-freezing hydrogels  for   supramolecular synergy of chemistry, topology, and mechanics[J].
                 monitoring human-motion[J]. Journal of Materials Chemistry B,   Advanced Functional Materials, 2019, 30(2): 1901693.
                 2019, 7(34): 5230-5236.                       [30]  ZHANG W, WANG R X, SUN Z M, et al. Catechol-functionalized
            [14]  CARLOS J, MELENDEZ H, IVAN H, et al. Composite based on   hydrogels: Biomimetic design, adhesion mechanism, and biomedical
                 poly(acrylic acid-co-itaconic acid) hydrogel with antibacterial   applications[J]. Chemical Society Reviews, 2020, 49(2): 433-464.
                 performance[J]. Polymer Composites, 2018, 39: 171-180.   [31]  CUI C Y, WU T L, GAO F, et al. An autolytic high strength instant
            [15]  CHEN S, TANG F, TANG L Z, et al. Synthesis of Cu-nanoparticle   adhesive hydrogel for emergency self-rescue[J]. Advanced Functional
                 hydrogel  with self-healing and photothermal properties[J].  ACS   Materials, 2018, 28(42): 1804925.
                 Applied Materials & Interfaces, 2017, 9(24): 20895-20903.   [32]  SEDO J, SAIZ-POSEU J, BUSQUE F, et al. Catechol-based biomimetic
            [16]  ZHANG M, GAO J, FAN Y J,  et al. Comparisons of nitrite   functional materials[J]. Advanced Materials, 2013, 25(5): 653-701.
                 accumulation, microbial behavior and nitrification kinetic in   [33]  LIU X, ZHANG Q, GAO Z,  et al. Bioinspired adhesive  hydrogel
                 continuous stirred tank (ST) and plug flow (PF) moving bed biofilm   driven by adenine and thymine[J]. ACS Applied Materials & Interface
                 reactors[J]. Chemosphere, 2021, 278(5/6): 130410.   Interfaces, 2017, 9(20): 17645-17652.
            [17]  XU Q N, MA J Z, ZHOU J  H,  et al. Bio-based core-shell casein-   [34]  LU Q Y, DANNER E, WAITE J H, et al. Adhesion of mussel foot
                 based silica nano-composite latex by double in situ polymerization:   proteins to different substrate surfaces[J]. Journal of the Royal Society
                 Synthesis, characterization and mechanism[J]. Chemical Engineering   Interface, 2013, 10(79): 20120759.
                 Journal, 2013, 228(28): 281-289.              [35]  XIONG X P, DUAN J J, WANG Y,  et al. Novel hierarchical
            [18]  ZHANG F, MA J Z, XU Q N, et al. Hollow casein-based polymeric   microparticles super-assembled from nanoparticles with the
                 nanospheres for opaque coatings[J]. ACS Applied Materials &   induction of casein micelles[J]. Journal of Nanoparticle Research,
                 Interfaces, 2016, 8(18): 11739-11748.             2013, 15(8): 1-11.
            [19]  XU Q N, FAN Q Q, MA J Z, et al. Facile synthesis of casein-based   [36]  CHI H J, QIAO  Y, WANG B,  et al. Swelling, thermal stability,
                 TiO 2 nanocomposite for self-cleaning and high covering coatings:   antibacterial properties enhancement on composite hydrogel
                 Insights from TiO 2 dosage[J]. Progress in Organic Coatings,  2016,   synthesized by chitosan-acrylic acid and ZnO nanowires[J]. Polymer-
                 99: 223-229.                                      Plastics Technology and Materials, 2019, 15(58): 1649-1661.
            [20]  WANG  Y N, MA  J Z, XU Q  N,  et al. Fabrication of antibacterial   [37]  HUANG Y W, ZENG M, REN J,  et al. Preparation and swelling
                 casein-based ZnO nanocomposite for flexible coatings[J]. Materials   properties of graphene oxide/poly(acrylic acid-co-acrylamide) super
                 & Design, 2017, 113(5): 240-245.                  absorbent  hydrogel nanocomposites[J]. Colloids and  Surfaces  A:
            [21]  MA J Z, AN W,  XU Q N,  et al. Antibacterial casein-based ZnO   Physicochemical and Engineering Aspects, 2012, 401: 97-106.
                 nanocomposite coatings with improved water resistance crafted via   [38]  THAKUR S, GOVENDER P, MAMO M, et al. Recent progress in
                 double in situ route[J]. Progress in Organic Coatings, 2019, 134: 40-   gelatin hydrogel nanocomposites for water purification and beyond[J].
                 47.                                               Vacuum, 2017, 146(5): 396-408.
            [22]  TANG S, YANG J, LIN L,  et al. Construction of physically   [39]  ZHENG X J (郑学晶), LIU F B (刘芳蓓), PEI  Y (裴莹),  et al.
                 crosslinked chitosan/sodium alginate/calcium ion double-Network   Review on rheology of hydrogels[J]. Polymer Bulletin (高分子通
                 hydrogel and its application to heavy metal ions removal[J]. Chemical   报), 2017, (5): 1-10.
                 Engineering Journal, 2020, 393: 124728.       [40]  ZHANG Y X ( 张亿鑫 ). Synthesis and properties  of CaCO 3/
            [23]  SELVAM S, SUNDRARAJAN M. Functionalization of cotton fabric   DNA-calcium alginate composite  hydrogel[D]. Qingdao: Qingdao
                 with PVP/ZnO nanoparticles for improved reactive dyeability and   University (青岛大学), 2020.
                 antibacterial activity[J]. Carbohydrate Polymers, 2012, 87(2): 1419-   [41]  GAO H X (高海霞). Preparation and photocatalytic properties  of
                 1424.                                             nano-ZnO/polymer composites[D]. Shanghai: East China Normal
            [24]  MOHAMED A L, EL-SHEIKH M A, WALY A I. Enhancement of   University (华东师范大学), 2007.
                 flame retardancy  and water repellency properties of cotton fabrics   [42]  WANG L N, ZHANG H J, LIU X Q, et al. A physically cross-linked
                 using silanol based nano composites[J]. Carbohydrate  Polymers,   sodium alginate-gelatin hydrogel with  high mechanical strength[J].
                 2014, 102(1): 727-737.                            ACS Applied Polymer Materials, 2021, 3(6): 3197-3205.
                                                                                                  2+
            [25]  WANG  Y N (王雅楠). Synthesis and properties of antibacterial   [43]  ZHANG  M, CHEN  S, ZHONG L,  et al.  Zn -loaded TOBC
                 casein-based nano-ZnO composite leather finishing materials[D].   nanofiber-reinforced biomimetic calcium  alginate hydrogel for
                 Xi'an: Shaanxi University of Science and Technology (陕西科技大  antibacterial wound dressing[J]. International Journal of  Biological
                 学), 2017.                                         Macromolecules, 2019, 143: 235-242.
   77   78   79   80   81   82   83   84   85   86   87