Page 103 - 《精细化工》2022年第6期
P. 103
第 6 期 李 桢,等: 细菌纤维素@Fe 3 O 4 /AgNWs 复合薄膜的制备与电磁屏蔽性能 ·1169·
2.5 BC@Fe 3 O 4 /AgNWs 复合薄膜的力学性能 和两步真空辅助抽滤法制得具有磁性导电层级结构
图 9 为 BC 薄膜和不同 AgNWs 面积含量 BC@ 的 BC@Fe 3 O 4 /AgNWs 复合薄膜。
Fe 3 O 4 /AgNWs 复合薄膜的应力-应变曲线。引入 (2)BC@Fe 3 O 4 /AgNWs 复合薄膜中 AgNWs 与
Fe 3 O 4 和 AgNWs 后,复合薄膜的拉伸强度和断裂伸 BC@Fe 3 O 4 基体之间存在氢键,具有良好的界面相
长率得到显著提升。这是由于 AgNWs 和 BC@Fe 3 O 4 互作用,且层级结构设计赋予复合薄膜良好的力学
之间存在丰富的氢键使二者具有良好的界面相互作 性能和导电性能。当 AgNWs 面积含量为 0.8 g/m 2
2
用。当 AgNWs 面积含量为 0.8 g/m 时,复合薄膜的 时,复合薄膜的拉伸强度和断裂伸长率分别达到
拉伸强度和 断裂伸长率 分别达到 84.6 MPa 和 84.6 MPa 和 4.05%。复合薄膜的导电性能随着
4.05%。但当 AgNWs 面积含量继续增大时,复合薄 AgNWs 面积含量的增加而增大。当 AgNWs 面积含
2
膜的拉伸强度开始下降,可能由 AgNWs 聚集引起 量为 1.8 g/m 时,复合薄膜的方阻最小为 0.42 Ω/sq。
的应力集中所造成。当 AgNWs 面积含量为 1.8 g/m 2 (3)磁性 Fe 3 O 4 纳米粒子的引入能够有效提升
时,复合薄膜的拉伸强度和断裂伸长率分别为 层级结构复合薄膜的电磁屏蔽效能。随着 AgNWs
60.2 MPa 和 2.31%,均优于 BC 薄膜(分别为 33.1 MPa 面积含量增加,BA@Fe 3 O 4 /AgNWs 复合薄膜的电
和 0.96%)。由图 9b 可以看出,BC@Fe 3 O 4 /AgNWs 磁总屏蔽效能逐渐增大。当 AgNWs 面积含量为
2
2
复合薄膜(AgNWs 面积含量为 0.8 g/m )在弯曲和 1.8 g/m 时,复合薄膜的总电磁屏蔽效能最高达到
提起 500 g 砝码时未出现明显破坏,表明所得复合 56 dB。所制得的磁性导电层级结构复合薄膜为柔
薄膜具有良好的柔韧性和力学性能。 性、高强且高效电磁屏蔽复合材料的设计开发提供
了新的方法,在柔性可穿戴电子设备等领域具有良
好的应用价值。
参考文献:
[1] CHUNG D D L. Materials for electromagnetic interference shielding
[J]. Materials Chemistry and Physics, 2020, 255: 123587.
[2] YAO Y Y, JIN S H, ZOU H M, et al. Polymer-based lightweight
materials for electromagnetic interference shielding: A review[J].
Journal of Materials Science, 2021, 56: 6549-6580.
[3] LIANG C B, GU Z J, ZHANG Y L, et al. Structural design strategies
of polymer matrix composites for electromagnetic interference
shielding: A review[J]. Nano-Micro Letters, 2021, 13: 1-29.
[4] WANASINGHE D, ASLANI F, MA G, et al. Review of polymer
composites with diverse nanofillers for electromagnetic interference
shielding[J]. Nanomaterials, 2020, 10: 1-46.
[5] WANASINGHE D, ASLANI F. A review on recent advancement of
electromagnetic interference shielding novel metallic materials and
processes[J]. Composites Part B Engineering, 2019, 176: 107207.
[6] WU X Y (吴昕昱), ZHANG H B (张好斌). Structure design and
electromagnetic shielding properties of polymer nanocomposites[J].
Acta Polymerica Sinica (高分子学报), 2020, 51(6): 573-585.
[7] LIU C, WANG L, LIU S, et al. Fabrication strategies of polymer-
based electromagnetic interference shielding materials[J]. Advanced
Industrial and Engineering Polymer Research, 2020, 3: 149-159.
[8] MARUTHI N, FAISAL M, RAGHAVENDRA N. Conducting
polymer based composites as efficient EMI shielding materials: A
comprehensive review and future prospects[J]. Synthetic Metals,
2021, 272: 116664.
[9] ANJU V P. Nanocellulose-based composites for EMI shielding
applications[M]. India: Elsevier Inc, 2021: 125-161.
图 9 BC@Fe 3 O 4 /AgNWs 复合薄膜的应力-应变曲线(a); [10] TAO T (陶涛), CHEN X F (陈裙凤), ZHENG Y L (郑亦玲), et al.
Research progress of cellulose conductive substrates and flexible
BC@Fe 3 O 4 /AgNWs 复合薄膜承载重物和弯曲时的 electronic devices[J]. Chinese Journal of Composites (复合材料学
照片(b) 报), 2021, 38(8): 2435-2451.
[11] FU Q J, CUI C, MENG L, et al. Emerging cellulose-derived
Fig. 9 Stress-strain curves of BC@Fe 3 O 4 /AgNWs composite materials: A promising platform for the design of flexible wearable
films (a); Photos of BC@Fe 3 O 4 /AgNWs composite sensors toward health and environment monitoring[J]. Materials
film when carrying heavy loads and bending (b) Chemistry Frontiers, 2020, 5: 2051-2091.
[12] RAY U, ZHU S, PANG Z, et al. Mechanics design in cellulose-
enabled high-performance functional materials[J]. Advanced Materials,
2020, 33: 2002504.
3 结论 [13] GUAN Q F, YANG H B, HAN Z M, et al. Lightweight, tough, and
sustainable cellulose nanofiber-derived bulk structural materials with
(1)以表面负载 Fe 3 O 4 纳米粒子的 BC 为磁性 low thermal expansion coefficient[J]. Science Advances, 2020, 6:
eazz1114.
基体,以 AgNWs 为高导电填料,通过原位共沉淀 (下转第 1211 页)