Page 88 - 《精细化工》2022年第6期
P. 88
·1154· 精细化工 FINE CHEMICALS 第 39 卷
载流子,缺电子的氧元素上逐步积累光生空穴,当 参考文献:
其吸附一定浓度的 H 2 O 分子后,H 2 O 分子与空穴反 [1] LUO M L, YANG Q, LIU K W, et al. Boosting photocatalytic H 2
*
*
应释放出一个电子分别形成中间吸附态 O、 OOH, evolution on g-C 3N 4 by modifying covalent organic frameworks
(COFs)[J]. Chemical Communications, 2019, 55(41): 5829-5832.
最终从 NP-COF 的表面释放出 O 2 ,释放的电子继续 [2] ZHAO S Y (赵苏艳), LIU C (刘畅), XU H (徐浩), et al. Two-
还原 AgNO 3 为 Ag,进行下一个循环过程。 dimensional covalent organic frameworks photocatalysts[J]. Progress
in Chemistry (化学进展), 2020, 32(2/3): 274-285.
[3] EISENBERG R, GRAY H B. Preface on making oxygen[J]. Inorganic
Chemistry, 2008, 47(6): 1697-1699.
[4] LAN Z A, FANG Y X, ZHANG Y F, et al. Photocatalytic oxygen
evolution from functional triazine-based polymers with tunable band
structures[J]. Angewandte Chemie International Edition, 2018, 57(2):
470-474.
[5] CHEN J, TAO X P, LI C Z, et al. Synthesis of bipyridine-based
covalent organic frameworks for visible-light-driven photocatalytic
water oxidation[J]. Applied Catalysis B: Environmental, 2020, 262:
118271.
[6] XIE J J, SHEVLIN S A, RUAN Q S, et al. Efficient visible light-driven
water oxidation and proton reduction by an ordered covalent triazine-
based framework[J]. Energy & Environmental Science, 2018, 11(6):
1617-1624.
[7] BI J H, FANG W, LI L Y, et al. Covalent triazine-based frameworks
as visible light photocatalysts for the splitting of water[J]. Macromolecular
Rapid Communications, 2015, 36(20): 1799-1805.
图 10 NP-COF 用于光催化 OER 的反应机理 [8] WANG H M (王弘民), DING H M (丁慧敏), WANG C (汪成).
Fig. 10 Reaction mechanism of NP-COF for photocatalytic Research progress in porphyrin-based covalent organic frameworks[J].
OER Chemistry (化学通报), 2017, 80(2): 132-138.
[9] ASCHERL L, EVANS E W, GORMAN J, et al. Perylene-based covalent
organic frameworks for acid vapor sensing[J]. Journal of the American
3 结论 Chemical Society, 2019, 141(39): 15693-15699.
[10] SEGURA J L, MANCHENO M J, ZAMORA F. Covalent organic
frameworks based on Schiff-base chemistry: Synthesis, properties
(1)设计、制备了具有强 π-π 共轭效应的 sp 2 and potential applications[J]. Chemical Society Reviews, 2016, 45(20):
碳连接构筑的 NP-COF。 5635-5671.
[11] CHEN R F, SHI J L, MA Y, et al. Designed synthesis of a 2D
(2)表征结果表明,NP-COF 是一种吸光性能 porphyrin-based sp carbon-conjugated covalent organic framework
2
良好、具有一定的载流子产生和迁移能力优势的半 for heterogeneous photocatalysis[J]. Angewandte Chemie International
Edition, 2019, 58(19): 6430-6434.
导体材料,能够在可见光诱导下高效驱动 H 2 O 分子 [12] BI S, YANG C, ZHANG W B, et al. Two-dimensional semiconducting
氧化反应的进行。在 300 W 氙灯(λ>420 nm)照射、 covalent organic frameworks via condensation at arylmethyl carbon
atoms[J]. Nature Communications, 2019, 10: 2467.
0.01 mol/L AgNO 3 作电子牺牲剂、La 2 O 3 作 pH 缓冲 [13] WANG C X, ZHANG H L, LUO W J, et al. Ultrathin crystalline
剂、7.4 mg Co(NO 3 ) 2 •6H 2 O 为助催化剂的条件下, covalent-triazine-framework nanosheets with electron donor groups
for synergistically enhanced photocatalytic water splitting[J]. Angewandte
50 mg NP-COF 光催化 OER 速率达 344 μmol/(g·h), Chemie International Edition, 2021, 60(48): 25381-25390.
高于现有 COFs 型光催化剂用于分解水产氧的水平。 [14] LIU W B, LI X K, WANG C M, et al. A scalable general synthetic
approach toward ultrathin imine-linked two-dimensional covalent
(3)推测了 NP-COF 光催化 OER 的机理,在 organic framework nanosheets for photocatalytic CO 2 reduction[J].
电子牺牲剂 AgNO 3 的作用下,多孔结构中的羰基氧 Journal of the American Chemical Society, 2019, 141(43): 17431-17440.
2
[15] JIN E Q, LAN Z A, JIANG Q H, et al. 2D sp carbon-conjugated
和酰亚胺单元中的氮作为可能的反应活性位点,以
covalent organic frameworks for photocatalytic hydrogen production
积累光生空穴将 H 2 O 分子氧化释放出 O 2 。 from water[J]. Chem, 2019, 5(6): 1632-1647.
(上接第 1140 页) supercritical medium[J]. Energy & Fuels, 2017, 31(3): 3038-3046.
[39] CASAPU M, FISCHER A, GANZLER A M, et al. The origin of the
[35] DEAL J W, LE P, COERY C B, et al. Water-gas shift reaction on normal and inverse hysteresis behavior during CO oxidation over
alumina-supported Pt-CeO x catalysts prepared by supercritical fluid Pt/Al 2O 3[J]. ACS Catalysis, 2016, 7(1): 343-355.
deposition[J]. The Journal of Supercritical Fluids, 2017, 119: 113-121. [40] JIANG H X, YAO C X, WANG Y D, et al. Synthesis and catalytic
[36] GARCIA J, JIMENEZ C, MARTINEZ F, et al. Electrochemical performance of highly dispersed platinum nanoparticles supported
reduction of CO 2 using Pb catalysts synthesized in supercritical on alumina via supercritical fluid deposition[J]. The Journal of
medium[J]. Journal of Catalysis, 2018, 367: 72-80. Supercritical Fluids, 2020, 166(1): 105014.
[37] TEOH W H, MAMMUCARI R, FOSTER N R. Solubility of organo- [41] CHENG N L (程能林). Solvents handbook[M]. Beijing: Chemical
metallic complexes in supercritical carbon dioxide: A review[J]. Industry Press (化学工业出版社), 2015.
Journal of Organometallic Chemistry, 2013, 724(15): 102-116. [42] ZHU H F (朱洪法), LIU L Z (刘丽芝). Preparation and application
[38] JIMENEZ C, GARCIA J, CAMARILLO R, et al. Electrochemical technology of catalyst[M]. Beijing: China Petrochemical Press (中国
CO 2 reduction to fuels using Pt/CNT catalysts synthesized in 石化出版社), 2011.