Page 88 - 《精细化工》2022年第6期
P. 88

·1154·                            精细化工   FINE CHEMICALS                                 第 39 卷

            载流子,缺电子的氧元素上逐步积累光生空穴,当                             参考文献:
            其吸附一定浓度的 H 2 O 分子后,H 2 O 分子与空穴反                    [1]   LUO M L,  YANG  Q, LIU K W,  et al. Boosting photocatalytic H 2
                                                *
                                                    *
            应释放出一个电子分别形成中间吸附态 O、 OOH,                              evolution on g-C 3N 4 by  modifying covalent organic frameworks
                                                                   (COFs)[J]. Chemical Communications, 2019, 55(41): 5829-5832.
            最终从 NP-COF 的表面释放出 O 2 ,释放的电子继续                     [2]   ZHAO S Y (赵苏艳), LIU C (刘畅), XU H (徐浩),  et al. Two-
            还原 AgNO 3 为 Ag,进行下一个循环过程。                              dimensional covalent organic frameworks photocatalysts[J]. Progress
                                                                   in Chemistry (化学进展), 2020, 32(2/3): 274-285.
                                                               [3]   EISENBERG R, GRAY H B. Preface on making oxygen[J]. Inorganic
                                                                   Chemistry, 2008, 47(6): 1697-1699.
                                                               [4]   LAN Z A, FANG Y X, ZHANG Y F, et al. Photocatalytic oxygen
                                                                   evolution from functional triazine-based polymers with tunable band
                                                                   structures[J]. Angewandte Chemie International Edition, 2018, 57(2):
                                                                   470-474.
                                                               [5]   CHEN J, TAO X  P, LI C Z,  et al. Synthesis  of bipyridine-based
                                                                   covalent organic frameworks for visible-light-driven photocatalytic
                                                                   water oxidation[J]. Applied Catalysis B: Environmental, 2020, 262:
                                                                   118271.
                                                               [6]   XIE J J, SHEVLIN S A, RUAN Q S, et al. Efficient visible light-driven
                                                                   water oxidation and proton reduction by an ordered covalent triazine-
                                                                   based framework[J]. Energy & Environmental Science, 2018, 11(6):
                                                                   1617-1624.
                                                               [7]   BI J H, FANG W, LI L Y, et al. Covalent triazine-based frameworks
                                                                   as visible light photocatalysts for the splitting of water[J]. Macromolecular
                                                                   Rapid Communications, 2015, 36(20): 1799-1805.
                 图 10  NP-COF 用于光催化 OER 的反应机理                  [8]   WANG H M (王弘民), DING H M (丁慧敏), WANG C (汪成).
            Fig.  10  Reaction  mechanism  of NP-COF for photocatalytic   Research progress in porphyrin-based covalent organic frameworks[J].
                   OER                                             Chemistry (化学通报), 2017, 80(2): 132-138.
                                                               [9]   ASCHERL L, EVANS E W, GORMAN J, et al. Perylene-based covalent
                                                                   organic frameworks for acid vapor sensing[J]. Journal of the American
            3   结论                                                 Chemical Society, 2019, 141(39): 15693-15699.
                                                               [10]  SEGURA J L,  MANCHENO M J, ZAMORA F.  Covalent organic
                                                                   frameworks based on Schiff-base  chemistry:  Synthesis,  properties
                 (1)设计、制备了具有强 π-π 共轭效应的 sp                2        and potential applications[J]. Chemical Society Reviews, 2016, 45(20):
            碳连接构筑的 NP-COF。                                         5635-5671.
                                                               [11]  CHEN  R F, SHI J L, MA  Y,  et al.  Designed synthesis of a 2D
                 (2)表征结果表明,NP-COF 是一种吸光性能                          porphyrin-based sp  carbon-conjugated covalent organic framework
                                                                               2
            良好、具有一定的载流子产生和迁移能力优势的半                                 for heterogeneous photocatalysis[J]. Angewandte Chemie International
                                                                   Edition, 2019, 58(19): 6430-6434.
            导体材料,能够在可见光诱导下高效驱动 H 2 O 分子                        [12]  BI S, YANG C, ZHANG W B, et al. Two-dimensional semiconducting
            氧化反应的进行。在 300 W 氙灯(λ>420 nm)照射、                        covalent organic frameworks via condensation at arylmethyl carbon
                                                                   atoms[J]. Nature Communications, 2019, 10: 2467.
            0.01 mol/L AgNO 3 作电子牺牲剂、La 2 O 3 作 pH 缓冲          [13]  WANG  C  X, ZHANG H L, LUO W  J,  et al. Ultrathin  crystalline
            剂、7.4 mg  Co(NO 3 ) 2 •6H 2 O 为助催化剂的条件下,               covalent-triazine-framework nanosheets with electron donor  groups
                                                                   for synergistically enhanced photocatalytic water splitting[J]. Angewandte
            50 mg NP-COF 光催化 OER 速率达 344 μmol/(g·h),               Chemie International Edition, 2021, 60(48): 25381-25390.
            高于现有 COFs 型光催化剂用于分解水产氧的水平。                         [14]  LIU W B, LI X K, WANG C M, et al. A scalable general synthetic
                                                                   approach toward ultrathin imine-linked two-dimensional covalent
                 (3)推测了 NP-COF 光催化 OER 的机理,在                       organic framework nanosheets for photocatalytic CO 2 reduction[J].
            电子牺牲剂 AgNO 3 的作用下,多孔结构中的羰基氧                            Journal of the American Chemical Society, 2019, 141(43): 17431-17440.
                                                                                                2
                                                               [15]  JIN E Q, LAN Z A, JIANG Q H, et al. 2D sp  carbon-conjugated
            和酰亚胺单元中的氮作为可能的反应活性位点,以
                                                                   covalent organic frameworks for photocatalytic hydrogen production
            积累光生空穴将 H 2 O 分子氧化释放出 O 2 。                            from water[J]. Chem, 2019, 5(6): 1632-1647.


            (上接第 1140 页)                                           supercritical medium[J]. Energy & Fuels, 2017, 31(3): 3038-3046.
                                                               [39]  CASAPU M, FISCHER A, GANZLER A M, et al. The origin of the
            [35]  DEAL J W, LE P,  COERY  C  B,  et al. Water-gas shift reaction on   normal and inverse hysteresis behavior during CO oxidation over
                 alumina-supported Pt-CeO x catalysts prepared by supercritical fluid   Pt/Al 2O 3[J]. ACS Catalysis, 2016, 7(1): 343-355.
                 deposition[J]. The Journal of Supercritical Fluids, 2017, 119: 113-121.   [40]  JIANG H X, YAO C X, WANG Y D, et al. Synthesis and catalytic
            [36]  GARCIA J, JIMENEZ C, MARTINEZ F,  et al. Electrochemical   performance of highly dispersed platinum nanoparticles supported
                 reduction of  CO 2  using  Pb catalysts synthesized in  supercritical   on alumina  via supercritical fluid  deposition[J]. The Journal  of
                 medium[J]. Journal of Catalysis, 2018, 367: 72-80.   Supercritical Fluids, 2020, 166(1): 105014.
            [37]  TEOH W H, MAMMUCARI R, FOSTER N R. Solubility of organo-  [41]  CHENG N L  (程能林). Solvents handbook[M]. Beijing: Chemical
                 metallic  complexes in supercritical carbon dioxide: A review[J].   Industry Press (化学工业出版社), 2015.
                 Journal of Organometallic Chemistry, 2013, 724(15): 102-116.   [42]  ZHU H F (朱洪法), LIU L Z (刘丽芝). Preparation and application
            [38]  JIMENEZ  C, GARCIA J, CAMARILLO  R,  et al. Electrochemical   technology of catalyst[M]. Beijing: China Petrochemical Press (中国
                 CO 2 reduction to fuels using Pt/CNT catalysts synthesized in   石化出版社), 2011.
   83   84   85   86   87   88   89   90   91   92   93