Page 102 - 《精细化工》2022年第8期
P. 102
·1602· 精细化工 FINE CHEMICALS 第 39 卷
的弱黏附力 [16] ,裸银纳米线电极中的纳米线在机械
弯曲过程中发生滑移,导致线结处接触不良甚至断
开,使得电阻上升。而复合电极中的导电网络半嵌
入聚合物膜,增大了导电网络与基底之间的附着力,
减小了滑移程度,因此,电阻变化较小,复合电极
表现出更好的机械柔韧性。
图 8 电极的薄层电阻与时间的关系曲线(a);裸银纳米
线电极(b)和复合电极(c)置于恒温恒湿箱中 3 结论
12 d 后的 SEM 图
Fig. 8 Relationship between sheet resistance of electrode 通过在裸银纳米线电极表面涂覆一层质量分数
and time (a); SEM images of bare silver nanowire 为 0.50%的纤维素溶液,于室温下将裸银纳米线电极
electrodes (b) and composite electrodes (c) placed (透光率为 87.7%)的初始薄层电阻从 27.0 Ω/sq 降低
in a constant temperature and humidity chamber for
12 d 至 14.0 Ω/sq,制备成的 HEC-AgNWs-PET 复合透明
电极几乎无透光率损失,该法工艺简单,具有普适
2.6 HEC-AgNWs-PET 复合电极的机械柔韧性
性且易于放大生产。纤维素溶液成膜过程中,银纳
在电极使用过程中,电极的机械柔韧性与电化
米线导电网络由松散堆积变得致密紧实,线结处形
学稳定性同样重要,因而,在循环弯曲下对其电阻
成更多的有效接触点,降低了电极的薄层电阻。纤
进行测试。图 9a、b 为初始薄层电阻为 15 Ω/sq 的裸
维素纳米膜填充了导电网络的空隙,改善了电极表
银纳米线电极与复合电极在 2500 次内外弯曲循环 面的粗糙度。复合电极表面的导电网络呈现半嵌入
中的电阻变化。结果表明,内弯曲测试 2500 次循环
的形态,提高了电极的机械稳定性与化学稳定性。
后,裸银纳米线电极与复合电极的电阻分别变为原
来的 1.56 倍与 1.36 倍。外弯曲测试 2500 次循环后, 参考文献:
裸银纳米线电极与复合电极的电阻分别变为原来的 [1] WANG Z X, JIAO B, QING Y C, et al. Flexible and transparent
ferroferric oxide-modified silver nanowire film for efficient electromagnetic
2.35 倍与 1.46 倍。
interference shielding[J]. ACS Applied Materials Interfaces, 2020,
12(2): 2826-2834.
[2] KANG H, KANG I, HAN J, et al. Flexible and mechanically robust
organic light-emitting diodes based on photopatternable silver
nanowire electrodes[J]. The Journal of Physical Chemistry C, 2016,
120(38): 22012-22018.
[3] ZHENG B D, ZHU Q S, ZHAO Y, et al. Fabrication of high-quality
silver nanowire conductive film and its application for transparent
film heaters[J]. Journal of Materials Science & Technology, 2021, 71:
221-227.
[4] LIU J, ZHANG L, LI C Z, et al. Highly stable, transparent, and
conductive electrode of solution-processed silver nanowire-mxene
for flexible alternating-current electroluminescent devices[J]. Industrial
& Engineering Chemistry Research, 2019, 58(47): 21485-21492.
[5] LI Y X (李禹欣), HU F (胡飞). Synthesis and properties of starch
substrate silver nanowires flexible transparent conductive films[J].
Fine Chemicals (精细化工), 2019, 36(10): 2101-2108.
[6] LU H F, ZHANG D, REN X G, et al. Selective growth and integration of
silver nanoparticles on silver nanowires at room conditions for transparent
nano-network electrode[J]. ACS Nano, 2014, 8(10): 10980-10987.
[7] LEE S J, KIM Y H, KIM J K, et al. A roll-to-roll welding process for
planarized silver nanowire electrodes[J]. Nanoscale, 2014, 6(20):
11828-11834.
[8] LEE J Y, CONNOR S T, CUI Y, et al. Solution-processed metal
nanowire mesh transparent electrodes[J]. Nano Letters, 2008, 8(2):
689-692.
[9] PARK J H, HWANG G T, KIM S, et al. Flash-induced self-limited
plasmonic welding of silver nanowire network for transparent flexible
图 9 电极内弯曲(a)和外弯曲(b)循环测试曲线
energy harvester[J]. Advanced Materials, 2017, 29(5): 1603473.
Fig. 9 Cyclic test curves of electrode inner bending (a) and [10] SONG T B, CHEN Y, CHUNG C H, et al. Nanoscale joule heating
outer bending (b) and electromigration enhanced ripening of silver nanowire contacts[J].
ACS Nano, 2014, 8(3): 2804-2811.
由于银纳米线的松散堆积以及导电网络与基底 (下转第 1611 页)