Page 188 - 《精细化工》2022年第8期
P. 188

·1688·                            精细化工   FINE CHEMICALS                                 第 39 卷

                                                               3   结论


                                                                  (1)以 POSS-Vi、IA 为原料,通过自由基聚合制
                                                                                                     1
                                                               得了 P(POSS-IA)纳米复合材料,通过 FTIR、HNMR、
                                                               XRD 对其结构进行了表征,TEM 表明,POSS-Vi 在
                                                               聚合物基体中均匀分散,直径为 50 nm 左右。
                                                                  (2)将 P(POSS-IA)应用于山羊酸皮鞣,与 P
                                                               (IA)、P(AA)、P(POSS-AA)、P(MAA)、P(POSS-
                                                               MAA)鞣制坯革性能对比。结果表明,P(POSS-IA)
                                                               鞣制坯革具有较高的收缩温度,为 68.2  ℃;P(POSS-
                                                               MAA)鞣制坯革具有较高的增厚率,为 53.3%;P
                                                               (POSS-AA)鞣制坯革的抗张强度和撕裂强度较高,
                                                               分别为 31.6 MPa、59.3 N/mm。P(POSS-IA)纳米
                                                               复合材料在鞣制坯革中分散更均匀。P(POSS-IA)
                                                               对 皮胶原 纤维 具有鞣 制和 填充性 能, 拓宽 了
                                                               POSS-Vi 在皮革行业的应用;并且 P(POSS-IA)中
                                                               含有活性基团,可以与非铬金属盐等无铬鞣剂一起
                                                               使用,改善非铬金属盐等无铬鞣剂本身缺陷,协同
                                                               提升皮胶原纤维鞣制性能,为研发环保型鞣剂材料
                                                               提供了新方法和新思路。

                                                               参考文献:
                                                               [1]   LI T M(李桃梅).Research on  development strategy of leather
                                                                   industry under new economic normal[J]. Western Leather (西部皮
                                                                   革), 2018, 40(1): 90-91.
                                                               [2]   SATHISH M, DHATHATHRETAN  A, RAO J R.  Ultra-efficient
                                                                   tanning process: Role of  mass transfer efficiency and sorption
                                                                   kinetics of Cr (Ⅲ) in processing of leather[J]. ACS Sustainable
                                                                   Chemistry & Engineering, 2019, 7(4): 3875-3882.
                                                               [3]   MATHILDE F,  YOHANN C, NICOLAS B,  et al. Hexavalent
                                                                   chromium release from leather over time natural ageing vs. accelerated
                                                                   ageing according to a multivariate approach[J]. Journal of Hazardous
                                                                   Materials, 2019, 368(4): 811-818.
                                                               [4]   OYEKANMI  A  A, LATIFF A  A, DAUD Z,  et al. Adsorption of
                                                                   cadmium and lead from palm oil mill effluent using bone-composite:
                                                                   Optimisation and isotherm studies[J]. International Journal of
                                                                   Environmental Analytical Chemistry, 2019, 99(8): 707-725.
                                                               [5]   WANG B, SUN  Y C, SUN R  C.  Fractionational  and structural
                                                                   characterization of lignin and its modification as biosorbents for
                                                                   efficient removal of chromium from wastewater: A review[J]. Journal
                                                                   of Leather Science and Engineering, 2019, 1(1): 1-25.
                                                               [6]   HAMPU N,  WERBER J R,  CHAN  W Y,  et al. Next-generation
                                                                   ultrafiltration membranes enabled by block polymers[J]. ACS Nano,
                                                                   2020, 14(12): 16446-16471.
                                                               [7]   LI Z, HU J F, YANG L, et al. Integrated POSS-dendrimer nanohybrid
                                                                   materials: Current status and future perspective[J]. Nanoscale, 2020,
                                                                   12(21): 11395-11415.

            a、aʹ—P(POSS-IA);b、bʹ—P(POSS-AA);c、cʹ—P(POSS-MAA)   [8]   HATICE K, HASAN Y, MEHMET D. Production of polyhedral
            图 9   鞣制坯革横截面的 SEM 图及该区域硅元素面扫(a、                       oligomeric silsesquioxane (POSS) containing low density polyethylene
                                                                   (LDPE) based nanocomposite films for minced beef packaging for
                  b、c);鞣制坯革肉面到粒面硅元素含量的 EDS 线
                                                                   extension of shelf life[J]. LWT-Food Science and Technology, 2019,
                  扫(aʹ、bʹ、cʹ)                                      108(7): 385-391.
            Fig. 9    Cross section surface SEM images and scanning of   [9]   SHI H H,  YANG J,  YOU M L,  et al. Polyhedral oligomeric
                   silicon element in corresponding area of  crust   silsesquioxanes (POSS)-based hybrid soft gels: Molecular design,
                   leather (a, b, c); EDS line  scanning of  silicon   material advantages, and emerging applications[J]. ACS Materials
                   element content from flesh surface to grain surface   Letters, 2020, 2(4): 296-316.
                   of crust leather (aʹ, bʹ, cʹ)               [10]  LI G Z,  WANG L C, NI  H L,  et al. Polyhedral oligomeric
   183   184   185   186   187   188   189   190   191   192   193