Page 135 - 《精细化工)》2023年第10期
P. 135

第 10 期                 刘   城,等:  亲疏水交替碳纸的制备及其在气体扩散层中的应用                                 ·2213·


            间的条纹,明暗条纹处的疏水剂含量存在很大差异。                            [5]   WANG S L (汪圣龙), YANG S J (杨绍军), PAN M (潘牧), et al.
                                                                   Influence of the PTFE contents  on  the performance of the gas
            明条纹几乎不含疏水剂,其接触角小于 90°,为亲
                                                                   diffusion layer[J]. Battery Bimonthly (电池), 2004, (6): 401-402.
            水区;暗条纹疏水剂含量较高,其接触角大于 90°,                          [6]   LI M J (李梦佳), MA W J (马闻骏), HUA F G (华飞果), et al. Study
            为疏水区。                                                  on carbon paper  modifying with fluorinated mesophase pitch[J].
                                                                   China Pulp & Paper (中国造纸), 2021, 40(5): 47-53.
                (2)亲疏水交替处理的碳纸,其亲水区电阻小                          [7]   PARK G G, SOHN Y J, YANG T H, et al. Effect of PTFE contents in
            于疏水区,且亲水区与双极板脊一一对应,有利于                                 the gas diffusion media on the performance of PEMFC[J]. Journal of
                                                                   Power Sources, 2003, 131(1/2): 182-187.
            降低欧姆极化,提高电池性能。                                     [8]   YU S C, HAO J  K, ZHANG L H,  et al. Effect of distribution of
                (3)对比亲疏水交替处理碳纸与无差别疏水处理                             polytetrafluoroethylene on durability  of gas diffusion backing in
                                                                   proton exchange membrane fuel cell[J]. Materials Research Bulletin,
            碳纸的 TP 透气率发现,采用亲疏水交替处理的碳纸,
                                                                   2020, 122: 1-7.
            平均透气率提高了 8.24%,有利于提高气体传质。                          [9]   LIU S H (刘士华), CHEN T (陈涛), XIE Y (谢屹), et al. Study on
                (4)采用基底层亲疏水交替处理的 GDL 组装                            properties of hydrophobic carbon paper prepared by ultrasonic[J].
                                                                   Acta Energiae Solaris Sinica (太阳能学报), 2021, 42(11): 437-441.
                               2
            的单电池,在 2 A/cm 电流密度下的电压为 0.47 V,                    [10]  ITO H, IWAMURA T, SOMEYA S,  et al. Effect of through-plane
                                  2
            功率密度为 948 mW/cm ,而采用基底层无差别疏水                           polytetrafluoroethylene distribution in gas diffusion layers on
                                               2
            处理的 GDL 组装的单电池,在 2 A/cm 电流密度下                          performance of proton exchange membrane fuel cells[J]. Journal of
                                                                   Power Sources, 2016, 306: 289-299.
                                                  2
            的电压为 0.44 V,功率密度为 884 mW/cm ,与基底                   [11]  KITAHARA T, NAKAJINA H, OKAMURA K. Gas diffusion layers
                                                                   coated with a microporous layer containing hydrophilic carbon
            层无差别疏水处理的 GDL 相比,采用基底层亲疏水
                                                                   nanotubes for performance enhancement of polymer electrolyte fuel
            交替处理的 GDL 组装的单电池,电压及功率密度分                              cells under both low and high humidity conditions[J]. Journal of
            别提高了 6.82%和 7.24%。                                     Power Sources, 2015, 283: 115-124.
                                                               [12]  KITAHARA T, NAKAJINA H, INAMOTO M,  et al. Novel
                                                                   hydrophilic and  hydrophobic double  microporous layer coated gas
            参考文献:                                                  diffusion layer to enhance performance of polymer electrolyte fuel
            [1]   KURNIA J C, SASMITO A P, SHAMIM T. Advances in proton   cells under both low and high humidity[J]. Journal of Power Sources,
                 exchange membrane fuel cell with dead-end anode operation: A   2013, 234: 129-138.
                 review[J]. Applied Energy, 2019, 252: 1-18.   [13]  YUE  L K (岳利可). Effect of hydrophobic treatment on the mass
            [2]   GAO  L F (高凌峰), CHENG F (程凤), YUAN M (袁满), et al.   transfer characteristics of PEMFC gas  diffusion layer[D].  Tianjing:
                 Research on influence of thickness of gas diffusion layer for  fuel   Tianjing University (天津大学), 2017.
                 cells[J]. Marine Electric & Electronic Technology (船电技术), 2022,   [14]  ZHUANG S J (庄思杰), ZHANG J  X (张静贤), LONG Z (龙柱),
                 42(10): 52-57.                                    et al. Preparation of gallic acid/ethylenediamine co-deposited polyester
            [3]   LI M J (李梦佳). Hydrophobic modification of carbon paper and its   fiber and its paper-forming properties[J]. Fine Chemicals (精细化
                 properties[D]. Tianjing: Tiangong University (天津工业大学), 2021.   工), 2021, 38(4): 846-852.
            [4]   WANG J (王晋).  A preparation method of the gas diffusion layer,   [15]  XIE Y (谢屹). Ultrasonic-assisted fabrication of hydrophobic carbon
                 corresponding membrane electrode assembly and a fuel cell:   paper and its application in PEMFC[D]. Wuhan: Wuhan University
                 CN113140738A[P]. 2021-07-20.                      of Technology (武汉理工大学), 2020.





            (上接第 2170 页)                                           370: 372-377.
                                                               [73]  KIM E, SHIN E W, BARK C W, et al. Pd catalyst promoted by two
                                                                   metal oxides with different reducibilities: Properties and performance
            [68]  LÓPEZ-VINASCO A M, MARTINEZ-PRIETO L M, ASENSIO J
                                                                   in the selective hydrogenation of acetylene[J]. Applied Catalysis A:
                 M,  et al. Novel nickel nanoparticles stabilized by imidazolium-
                                                                   General, 2014, 471: 80-83.
                 amidinate ligands for selective hydrogenation of alkynes[J]. Catalysis
                                                               [74]  DONPHAI W, KAMEGAWA T, CHAREONPANICH M,  et al.
                 Science & Technology, 2020, 10(2): 342-350.       Reactivity of Ni-carbon  nanofibers/mesocellular silica composite
            [69]  MURUGESAN K, BHEETER  C  B, LINNEBANK P  R,  et al.   catalyst for phenylacetylene hydrogenation[J]. Industrial &
                 Nickel-catalyzed stereodivergent synthesis of  E- and  Z-alkenes by   Engineering Chemistry Research, 2014, 53(24): 10105-10111.
                 hydrogenation  of alkynes[J]. ChemSusChem, 2019, 12(14):   [75]  CAO Y L, MAO S J, LI M M, et al. Metal/porous carbon composites
                 3363-3369.
            [70]  EROKHIN A  V,  LOKTEVA E S,  YERMAKOV A  Y,  et al.   for heterogeneous catalysis: Old catalysts with improved
                                                                   performance promoted by N-doping[J]. ACS Catalysis, 2017, 7(12):
                 Phenylacetylene hydrogenation on Fe@C and Ni@C core-shell
                 nanoparticles: About intrinsic activity of graphene-like carbon layer   8090-8112.
                 in H 2 activation[J]. Carbon, 2014, 74: 291-301.   [76]  WU W, ZHANG W, LONG Y, et al. Ni modified Pd nanoparticles
            [71]  GUO X  L (郭小玲), CHEN X (陈霄), SU D S (苏党生),  et al.   immobilized on hollow nitrogen doped carbon spheres for the
                 Preparation of Ni/C core-shell nanoparticles through MOF pyrolysis   simehydrogenation of phenylacetylene[J]. Journal of Colloid and
                 for phenylacetylene hydrogenation reaction[J]. Acta Chimica Sinica   Interface Science, 2018, 531: 642-653.
                 (化学学报), 2018, 76(1): 22-29.                   [77]  GOLUBINA E, LOKTEVA E, EROKHIN  A,  et al.  The role of
            [72]  MURUGESAN K, ALSHAMMARI A S, SOHAIL  M,  et al.   metal-support interaction in catalytic activity of nanodiamond-
                 Monodisperse nickel-nanoparticles for stereo-and chemoselective   supported  nickel in selective phenylacetylene hydrogenation[J].
                 hydrogenation of alkynes to alkenes[J]. Journal of Catalysis, 2019,   Journal of Catalysis, 2016, 344: 90-99.
   130   131   132   133   134   135   136   137   138   139   140