Page 135 - 《精细化工)》2023年第10期
P. 135
第 10 期 刘 城,等: 亲疏水交替碳纸的制备及其在气体扩散层中的应用 ·2213·
间的条纹,明暗条纹处的疏水剂含量存在很大差异。 [5] WANG S L (汪圣龙), YANG S J (杨绍军), PAN M (潘牧), et al.
Influence of the PTFE contents on the performance of the gas
明条纹几乎不含疏水剂,其接触角小于 90°,为亲
diffusion layer[J]. Battery Bimonthly (电池), 2004, (6): 401-402.
水区;暗条纹疏水剂含量较高,其接触角大于 90°, [6] LI M J (李梦佳), MA W J (马闻骏), HUA F G (华飞果), et al. Study
为疏水区。 on carbon paper modifying with fluorinated mesophase pitch[J].
China Pulp & Paper (中国造纸), 2021, 40(5): 47-53.
(2)亲疏水交替处理的碳纸,其亲水区电阻小 [7] PARK G G, SOHN Y J, YANG T H, et al. Effect of PTFE contents in
于疏水区,且亲水区与双极板脊一一对应,有利于 the gas diffusion media on the performance of PEMFC[J]. Journal of
Power Sources, 2003, 131(1/2): 182-187.
降低欧姆极化,提高电池性能。 [8] YU S C, HAO J K, ZHANG L H, et al. Effect of distribution of
(3)对比亲疏水交替处理碳纸与无差别疏水处理 polytetrafluoroethylene on durability of gas diffusion backing in
proton exchange membrane fuel cell[J]. Materials Research Bulletin,
碳纸的 TP 透气率发现,采用亲疏水交替处理的碳纸,
2020, 122: 1-7.
平均透气率提高了 8.24%,有利于提高气体传质。 [9] LIU S H (刘士华), CHEN T (陈涛), XIE Y (谢屹), et al. Study on
(4)采用基底层亲疏水交替处理的 GDL 组装 properties of hydrophobic carbon paper prepared by ultrasonic[J].
Acta Energiae Solaris Sinica (太阳能学报), 2021, 42(11): 437-441.
2
的单电池,在 2 A/cm 电流密度下的电压为 0.47 V, [10] ITO H, IWAMURA T, SOMEYA S, et al. Effect of through-plane
2
功率密度为 948 mW/cm ,而采用基底层无差别疏水 polytetrafluoroethylene distribution in gas diffusion layers on
2
处理的 GDL 组装的单电池,在 2 A/cm 电流密度下 performance of proton exchange membrane fuel cells[J]. Journal of
Power Sources, 2016, 306: 289-299.
2
的电压为 0.44 V,功率密度为 884 mW/cm ,与基底 [11] KITAHARA T, NAKAJINA H, OKAMURA K. Gas diffusion layers
coated with a microporous layer containing hydrophilic carbon
层无差别疏水处理的 GDL 相比,采用基底层亲疏水
nanotubes for performance enhancement of polymer electrolyte fuel
交替处理的 GDL 组装的单电池,电压及功率密度分 cells under both low and high humidity conditions[J]. Journal of
别提高了 6.82%和 7.24%。 Power Sources, 2015, 283: 115-124.
[12] KITAHARA T, NAKAJINA H, INAMOTO M, et al. Novel
hydrophilic and hydrophobic double microporous layer coated gas
参考文献: diffusion layer to enhance performance of polymer electrolyte fuel
[1] KURNIA J C, SASMITO A P, SHAMIM T. Advances in proton cells under both low and high humidity[J]. Journal of Power Sources,
exchange membrane fuel cell with dead-end anode operation: A 2013, 234: 129-138.
review[J]. Applied Energy, 2019, 252: 1-18. [13] YUE L K (岳利可). Effect of hydrophobic treatment on the mass
[2] GAO L F (高凌峰), CHENG F (程凤), YUAN M (袁满), et al. transfer characteristics of PEMFC gas diffusion layer[D]. Tianjing:
Research on influence of thickness of gas diffusion layer for fuel Tianjing University (天津大学), 2017.
cells[J]. Marine Electric & Electronic Technology (船电技术), 2022, [14] ZHUANG S J (庄思杰), ZHANG J X (张静贤), LONG Z (龙柱),
42(10): 52-57. et al. Preparation of gallic acid/ethylenediamine co-deposited polyester
[3] LI M J (李梦佳). Hydrophobic modification of carbon paper and its fiber and its paper-forming properties[J]. Fine Chemicals (精细化
properties[D]. Tianjing: Tiangong University (天津工业大学), 2021. 工), 2021, 38(4): 846-852.
[4] WANG J (王晋). A preparation method of the gas diffusion layer, [15] XIE Y (谢屹). Ultrasonic-assisted fabrication of hydrophobic carbon
corresponding membrane electrode assembly and a fuel cell: paper and its application in PEMFC[D]. Wuhan: Wuhan University
CN113140738A[P]. 2021-07-20. of Technology (武汉理工大学), 2020.
(上接第 2170 页) 370: 372-377.
[73] KIM E, SHIN E W, BARK C W, et al. Pd catalyst promoted by two
metal oxides with different reducibilities: Properties and performance
[68] LÓPEZ-VINASCO A M, MARTINEZ-PRIETO L M, ASENSIO J
in the selective hydrogenation of acetylene[J]. Applied Catalysis A:
M, et al. Novel nickel nanoparticles stabilized by imidazolium-
General, 2014, 471: 80-83.
amidinate ligands for selective hydrogenation of alkynes[J]. Catalysis
[74] DONPHAI W, KAMEGAWA T, CHAREONPANICH M, et al.
Science & Technology, 2020, 10(2): 342-350. Reactivity of Ni-carbon nanofibers/mesocellular silica composite
[69] MURUGESAN K, BHEETER C B, LINNEBANK P R, et al. catalyst for phenylacetylene hydrogenation[J]. Industrial &
Nickel-catalyzed stereodivergent synthesis of E- and Z-alkenes by Engineering Chemistry Research, 2014, 53(24): 10105-10111.
hydrogenation of alkynes[J]. ChemSusChem, 2019, 12(14): [75] CAO Y L, MAO S J, LI M M, et al. Metal/porous carbon composites
3363-3369.
[70] EROKHIN A V, LOKTEVA E S, YERMAKOV A Y, et al. for heterogeneous catalysis: Old catalysts with improved
performance promoted by N-doping[J]. ACS Catalysis, 2017, 7(12):
Phenylacetylene hydrogenation on Fe@C and Ni@C core-shell
nanoparticles: About intrinsic activity of graphene-like carbon layer 8090-8112.
in H 2 activation[J]. Carbon, 2014, 74: 291-301. [76] WU W, ZHANG W, LONG Y, et al. Ni modified Pd nanoparticles
[71] GUO X L (郭小玲), CHEN X (陈霄), SU D S (苏党生), et al. immobilized on hollow nitrogen doped carbon spheres for the
Preparation of Ni/C core-shell nanoparticles through MOF pyrolysis simehydrogenation of phenylacetylene[J]. Journal of Colloid and
for phenylacetylene hydrogenation reaction[J]. Acta Chimica Sinica Interface Science, 2018, 531: 642-653.
(化学学报), 2018, 76(1): 22-29. [77] GOLUBINA E, LOKTEVA E, EROKHIN A, et al. The role of
[72] MURUGESAN K, ALSHAMMARI A S, SOHAIL M, et al. metal-support interaction in catalytic activity of nanodiamond-
Monodisperse nickel-nanoparticles for stereo-and chemoselective supported nickel in selective phenylacetylene hydrogenation[J].
hydrogenation of alkynes to alkenes[J]. Journal of Catalysis, 2019, Journal of Catalysis, 2016, 344: 90-99.