Page 23 - 《精细化工》2023年第11期
P. 23

第 11 期                         邵伟春,等:  二氧化锰基电催化材料研究进展                                   ·2335·


                 ultra-stable electrochemical water oxidation and oxygen reduction   alcohol oxidation for ultra-durable hydrogen and chemical
                 reaction catalysts identified in alkaline media[J]. Journal of the   productions in acidic solutions[J]. Angewandte Chemie International,
                 American Chemical Society, 2014, 136(32): 11452-11464.   2021, 60(39): 21464-21472.
            [56]  WANG Z, GAO W, XU Q, et al. Influence of the MnO 2 phase on   [74]  YE Z, LI T, MA G, et al. Metal-ion (Fe, V, Co, and Ni)-doped MnO 2
                 oxygen evolution  reaction performance for low-loading iridium   ultrathin nanosheets supported on carbon fiber paper for the oxygen
                 electrocatalysts[J]. ChemElectroChem, 2021, 8(2): 418-424.   evolution reaction[J]. Advanced Functional Materials, 2017, 27(44):
            [57]  GOH F W T, LIU Z, GE X, et al. Ag nanoparticle-modified MnO 2   1704083.
                 nanorods catalyst for use as an  air electrode in zinc-air battery[J].   [75]  XIONG X, JI Y,  XIE M,  et al. MnO 2-CoP 3  nanowires array: An
                 Electrochimica Acta, 2013, 114: 598-604.          efficient electrocatalyst for alkaline oxygen evolution reaction with
            [58]  YANG Y, SU X,  ZHANG L,  et al. Intercalating MnO 2 nanosheets   enhanced activity[J]. Electrochemistry Communications,  2018, 86:
                 with transition metal cations to enhance oxygen evolution[J].   161-165.
                 ChemCatChem, 2019, 11(6): 1689-1700.          [76]  CHEN C, XU  R,  WANG X,  et al. Controllable preparation of
            [59]  TIAN L, WANG J, WANG K, et al. Carbon-quantum-dots-embedded   Ti/TiO 2-NTs/PbO 2-CNTs-MnO 2 layered composite materials with
                 MnO 2 nanoflower as an efficient electrocatalyst for oxygen evolution   excellent electrocatalytic activity for the OER in acidic media[J].
                 in alkaline media[J]. Carbon, 2019, 143: 457-466.   Ceramics International, 2021, 47(18): 25350-25362.
            [60]  ZHANG H, LIN C, DU F, et al. Enhanced interactions between gold   [77]  ZHAI X, MAO Z, ZHAO G, et al. Nanoflake δ-MnO 2 deposited on
                 and MnO 2 nanowires for water oxidation: A comparison of different   carbon nanotubes-graphene-Ni  foam scaffolds as self-standing
                 chemical and physical preparation methods[J]. ACS Sustainable   three-dimensional porous anodes for high-rate-performance lithium-
                 Chemistry & Engineering, 2015, 3(9): 2049-2057.   ion batteries[J]. Journal of Power Sources, 2018, 402: 373-380.
            [61]  ZHANG J  H, FENG J Y, ZHU  T,  et al. Pd-doped urchin-like   [78]  XIE K,  MASA J, MADEJ  E,  et al. Co 3O 4-MnO 2-CNT hybrids
                 MnO 2-carbon sphere three-dimensional (3D) material for   synthesized by HNO 3 vapor oxidation of catalytically grown CNTs as
                 oxygenevolution reaction[J]. Electrochimica Acta, 2016, 196:   OER electrocatalysts[J]. ChemCatChem, 2015, 7(18): 3027-3035.
                 661-669.                                      [79]  YE M, HU F, YU D, et al. Hierarchical FeC/MnO 2 composite with
            [62]  ZHAO  Y, CHANG C, TENG F,  et al. Defect-engineered ultrathin   in-situ grown CNTs as an advanced trifunctional catalyst  for water
                 δ-MnO 2 nanosheet arrays as bifunctional electrodes  for efficient   splitting and metal-air batteries[J]. Ceramics International, 2021,
                 overall water splitting[J]. Advanced Energy Materials, 2017, 7(18):   47(13): 18424-18432.
                 1700005.                                      [80]  CHEN  Y, ZHANG X, QIN J,  et al. High-throughput  screening  of
            [63]  BERA K, KARMAKAR A, KARTHICK K, et al. Enhancement of   single metal atom  anchored on N-doped boron phosphide for N 2
                 the OER kinetics of the less-explored alpha-MnO 2 via nickel doping   reduction[J]. Nanoscale, 2021, 13(31): 13437-13450.
                 approaches in alkaline medium[J].  Inorganic Chemistry, 2021,   [81]  CHU  K, LIU Y P, LI Y B,  et al. Multi-functional Mo-doping in
                 60(24): 19429-19439.                              MnO 2 nanoflowers toward efficient and robust electrocatalytic
            [64]  XIONG Y, XU L, JIN C, et al. Interface-engineered atomically thin   nitrogen fixation[J]. Applied Catalysis B: Environmental, 2020, 264:
                 Ni 3S 2/MnO 2 heterogeneous  nanoarrays for efficient overall water   118525.
                 splitting in alkaline media[J]. Applied Catalysis B: Environmental,   [82]  CHU K, LIU Y P, CHENG Y H, et al. Synergistic boron-dopants and
                 2019, 254: 329-338.                               boron-induced oxygen vacancies in MnO 2 nanosheets to promote
            [65]  WANG P, LIN Y, WAN L, et al. Construction of a janus MnO 2-NiFe   electrocatalytic nitrogen reduction[J]. Journal of Materials Chemistry
                 electrode  via selective electrodeposition strategy as  a high-   A, 2020, 8(10): 5200-5208.
                 performance bifunctional electrocatalyst for rechargeable  zinc-air   [83]  SUN C, MU Y,  WANG Y. A Pd/MnO 2 electrocatalyst for nitrogen
                 batteries[J]. ACS Applied Materials  & Interfaces, 2019, 11(41):   reduction to ammonia under ambient conditions[J]. Catalysts, 2020,
                 37701-37707.                                      10(7): 802.
            [66]  FANG M, HAN D, XU  W  B,  et al.  Surface-guided formation of   [84]  LIN R, KANG L, ZHAO T, et al. Identification and manipulation of
                 amorphous mixed-metal oxyhydroxides on ultrathin MnO 2 nanosheet   dynamic active site deficiency-induced competing reactions  in
                 arrays for efficient electrocatalytic oxygen evolution[J]. Advanced   electrocatalytic oxidation processes[J]. Energy & Environmental
                 Energy Materials, 2020, 10(27): 2001059.          Science, 2022, 15(6): 2386-2396.
            [67]  HU Q, LIU X, ZHU B, et al. Redox route to ultrathin metal sulfides   [85]  ZHU B, LIANG Z, ZOU R. Designing advanced catalysts for energy
                 nanosheet arrays-anchored MnO 2 nanoparticles as self-supported   conversion based on urea oxidation reaction[J]. Small, 2020, 16(7):
                 electrocatalysts for efficient water splitting[J]. Journal of  Power   1906133.
                 Sources, 2018, 398: 159-166.                  [86]  TSAI S C, WU M S. Hydrothermal growth of pompon-like
            [68]  YAN K L, SHANG X, GAO W K, et al. Ternary MnO 2/NiCo 2O 4/NF   manganese oxide microspheres with embedded nickel ions as
                 with hierarchical  structure  and synergistic  interaction as efficient   single-atom catalysts for  urea oxidation[J]. Journal  of  Alloys and
                 electrocatalysts for oxygen evolution reaction[J]. Journal of Alloys   Compounds, 2022, 894: 162515.
                 and Compounds, 2017, 719: 314-321.            [87]  XIAO C, LI S, ZHANG X, et al. MnO 2/MnCo 2O 4/Ni heterostructure
            [69]  JIAN T, ZHU J, MA W, et al. Interconnected two-dimensional MnO 2   with quadruple hierarchy: A bifunctional electrode architecture for
                 nanosheets anchored on three-dimensional porous Cu skeleton as a   overall urea oxidation[J]. Journal of  Materials Chemistry A, 2017,
                 high-performance  cathode for energy storage[J]. Applied  Surface   5(17): 7825-7832.
                 Science, 2020, 529: 147152.                   [88]  MENG J, CHERNEV P, MOHAMMADI M R, et al. Self-supported
            [70]  SAHA S, CHHETRI S, KHANRA P,  et al.  In-situ hydrothermal   Ni(OH) 2/MnO 2 on CFP as a flexible anode towards electrocatalytic
                 synthesis of MnO 2/NiO@Ni hetero structure electrode for hydrogen   urea conversion: The role of composition on activity, redox states and
                 evolution reaction and high energy asymmetric supercapacitor   reaction dynamics[J]. Electrochimica Acta, 2019, 318: 32-41.
                 applications[J]. Journal of Energy Storage, 2016, 6: 22-31.   [89]  VOLK T. CO 2 Rising: The world's  greatest environmental
            [71]  WEI J X, CAO M Z, XIAO K, et al. In-situ confining Pt clusters in   challenge[M]. Cambridge:The Massachusetts Institute of Technology
                 ultrathin MnO 2 nanosheets for highly  efficient hydrogen  evolution   Press, 2008.
                 reaction[J]. Small Structures, 2021, 2(9): 2100047.   [90]  SCHRAG  D P. Preparing to capture carbon[J]. Science, 2007,
            [72]  CHEN L, ZHANG X, JIANG W,  et al.  In-situ transformation  of   315(5813): 812-813.
                 Cu 2O@MnO 2 to Cu@Mn(OH) 2  nanosheet-on-nanowire arrays for   [91]  JACOBY M.  The  hidden value of carbon dioxide[J]. Chemical  &
                 efficient hydrogen evolution[J]. Nano Research, 2018, 11(4):   Engineering News, 2013, 91(26): 21-22.
                 1798-1809.
            [73]  LI  Y, WEI X, HAN S,  et al. MnO 2 electrocatalysts  coordinating          (下转第 2347 页)
   18   19   20   21   22   23   24   25   26   27   28