Page 23 - 《精细化工》2023年第11期
P. 23
第 11 期 邵伟春,等: 二氧化锰基电催化材料研究进展 ·2335·
ultra-stable electrochemical water oxidation and oxygen reduction alcohol oxidation for ultra-durable hydrogen and chemical
reaction catalysts identified in alkaline media[J]. Journal of the productions in acidic solutions[J]. Angewandte Chemie International,
American Chemical Society, 2014, 136(32): 11452-11464. 2021, 60(39): 21464-21472.
[56] WANG Z, GAO W, XU Q, et al. Influence of the MnO 2 phase on [74] YE Z, LI T, MA G, et al. Metal-ion (Fe, V, Co, and Ni)-doped MnO 2
oxygen evolution reaction performance for low-loading iridium ultrathin nanosheets supported on carbon fiber paper for the oxygen
electrocatalysts[J]. ChemElectroChem, 2021, 8(2): 418-424. evolution reaction[J]. Advanced Functional Materials, 2017, 27(44):
[57] GOH F W T, LIU Z, GE X, et al. Ag nanoparticle-modified MnO 2 1704083.
nanorods catalyst for use as an air electrode in zinc-air battery[J]. [75] XIONG X, JI Y, XIE M, et al. MnO 2-CoP 3 nanowires array: An
Electrochimica Acta, 2013, 114: 598-604. efficient electrocatalyst for alkaline oxygen evolution reaction with
[58] YANG Y, SU X, ZHANG L, et al. Intercalating MnO 2 nanosheets enhanced activity[J]. Electrochemistry Communications, 2018, 86:
with transition metal cations to enhance oxygen evolution[J]. 161-165.
ChemCatChem, 2019, 11(6): 1689-1700. [76] CHEN C, XU R, WANG X, et al. Controllable preparation of
[59] TIAN L, WANG J, WANG K, et al. Carbon-quantum-dots-embedded Ti/TiO 2-NTs/PbO 2-CNTs-MnO 2 layered composite materials with
MnO 2 nanoflower as an efficient electrocatalyst for oxygen evolution excellent electrocatalytic activity for the OER in acidic media[J].
in alkaline media[J]. Carbon, 2019, 143: 457-466. Ceramics International, 2021, 47(18): 25350-25362.
[60] ZHANG H, LIN C, DU F, et al. Enhanced interactions between gold [77] ZHAI X, MAO Z, ZHAO G, et al. Nanoflake δ-MnO 2 deposited on
and MnO 2 nanowires for water oxidation: A comparison of different carbon nanotubes-graphene-Ni foam scaffolds as self-standing
chemical and physical preparation methods[J]. ACS Sustainable three-dimensional porous anodes for high-rate-performance lithium-
Chemistry & Engineering, 2015, 3(9): 2049-2057. ion batteries[J]. Journal of Power Sources, 2018, 402: 373-380.
[61] ZHANG J H, FENG J Y, ZHU T, et al. Pd-doped urchin-like [78] XIE K, MASA J, MADEJ E, et al. Co 3O 4-MnO 2-CNT hybrids
MnO 2-carbon sphere three-dimensional (3D) material for synthesized by HNO 3 vapor oxidation of catalytically grown CNTs as
oxygenevolution reaction[J]. Electrochimica Acta, 2016, 196: OER electrocatalysts[J]. ChemCatChem, 2015, 7(18): 3027-3035.
661-669. [79] YE M, HU F, YU D, et al. Hierarchical FeC/MnO 2 composite with
[62] ZHAO Y, CHANG C, TENG F, et al. Defect-engineered ultrathin in-situ grown CNTs as an advanced trifunctional catalyst for water
δ-MnO 2 nanosheet arrays as bifunctional electrodes for efficient splitting and metal-air batteries[J]. Ceramics International, 2021,
overall water splitting[J]. Advanced Energy Materials, 2017, 7(18): 47(13): 18424-18432.
1700005. [80] CHEN Y, ZHANG X, QIN J, et al. High-throughput screening of
[63] BERA K, KARMAKAR A, KARTHICK K, et al. Enhancement of single metal atom anchored on N-doped boron phosphide for N 2
the OER kinetics of the less-explored alpha-MnO 2 via nickel doping reduction[J]. Nanoscale, 2021, 13(31): 13437-13450.
approaches in alkaline medium[J]. Inorganic Chemistry, 2021, [81] CHU K, LIU Y P, LI Y B, et al. Multi-functional Mo-doping in
60(24): 19429-19439. MnO 2 nanoflowers toward efficient and robust electrocatalytic
[64] XIONG Y, XU L, JIN C, et al. Interface-engineered atomically thin nitrogen fixation[J]. Applied Catalysis B: Environmental, 2020, 264:
Ni 3S 2/MnO 2 heterogeneous nanoarrays for efficient overall water 118525.
splitting in alkaline media[J]. Applied Catalysis B: Environmental, [82] CHU K, LIU Y P, CHENG Y H, et al. Synergistic boron-dopants and
2019, 254: 329-338. boron-induced oxygen vacancies in MnO 2 nanosheets to promote
[65] WANG P, LIN Y, WAN L, et al. Construction of a janus MnO 2-NiFe electrocatalytic nitrogen reduction[J]. Journal of Materials Chemistry
electrode via selective electrodeposition strategy as a high- A, 2020, 8(10): 5200-5208.
performance bifunctional electrocatalyst for rechargeable zinc-air [83] SUN C, MU Y, WANG Y. A Pd/MnO 2 electrocatalyst for nitrogen
batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(41): reduction to ammonia under ambient conditions[J]. Catalysts, 2020,
37701-37707. 10(7): 802.
[66] FANG M, HAN D, XU W B, et al. Surface-guided formation of [84] LIN R, KANG L, ZHAO T, et al. Identification and manipulation of
amorphous mixed-metal oxyhydroxides on ultrathin MnO 2 nanosheet dynamic active site deficiency-induced competing reactions in
arrays for efficient electrocatalytic oxygen evolution[J]. Advanced electrocatalytic oxidation processes[J]. Energy & Environmental
Energy Materials, 2020, 10(27): 2001059. Science, 2022, 15(6): 2386-2396.
[67] HU Q, LIU X, ZHU B, et al. Redox route to ultrathin metal sulfides [85] ZHU B, LIANG Z, ZOU R. Designing advanced catalysts for energy
nanosheet arrays-anchored MnO 2 nanoparticles as self-supported conversion based on urea oxidation reaction[J]. Small, 2020, 16(7):
electrocatalysts for efficient water splitting[J]. Journal of Power 1906133.
Sources, 2018, 398: 159-166. [86] TSAI S C, WU M S. Hydrothermal growth of pompon-like
[68] YAN K L, SHANG X, GAO W K, et al. Ternary MnO 2/NiCo 2O 4/NF manganese oxide microspheres with embedded nickel ions as
with hierarchical structure and synergistic interaction as efficient single-atom catalysts for urea oxidation[J]. Journal of Alloys and
electrocatalysts for oxygen evolution reaction[J]. Journal of Alloys Compounds, 2022, 894: 162515.
and Compounds, 2017, 719: 314-321. [87] XIAO C, LI S, ZHANG X, et al. MnO 2/MnCo 2O 4/Ni heterostructure
[69] JIAN T, ZHU J, MA W, et al. Interconnected two-dimensional MnO 2 with quadruple hierarchy: A bifunctional electrode architecture for
nanosheets anchored on three-dimensional porous Cu skeleton as a overall urea oxidation[J]. Journal of Materials Chemistry A, 2017,
high-performance cathode for energy storage[J]. Applied Surface 5(17): 7825-7832.
Science, 2020, 529: 147152. [88] MENG J, CHERNEV P, MOHAMMADI M R, et al. Self-supported
[70] SAHA S, CHHETRI S, KHANRA P, et al. In-situ hydrothermal Ni(OH) 2/MnO 2 on CFP as a flexible anode towards electrocatalytic
synthesis of MnO 2/NiO@Ni hetero structure electrode for hydrogen urea conversion: The role of composition on activity, redox states and
evolution reaction and high energy asymmetric supercapacitor reaction dynamics[J]. Electrochimica Acta, 2019, 318: 32-41.
applications[J]. Journal of Energy Storage, 2016, 6: 22-31. [89] VOLK T. CO 2 Rising: The world's greatest environmental
[71] WEI J X, CAO M Z, XIAO K, et al. In-situ confining Pt clusters in challenge[M]. Cambridge:The Massachusetts Institute of Technology
ultrathin MnO 2 nanosheets for highly efficient hydrogen evolution Press, 2008.
reaction[J]. Small Structures, 2021, 2(9): 2100047. [90] SCHRAG D P. Preparing to capture carbon[J]. Science, 2007,
[72] CHEN L, ZHANG X, JIANG W, et al. In-situ transformation of 315(5813): 812-813.
Cu 2O@MnO 2 to Cu@Mn(OH) 2 nanosheet-on-nanowire arrays for [91] JACOBY M. The hidden value of carbon dioxide[J]. Chemical &
efficient hydrogen evolution[J]. Nano Research, 2018, 11(4): Engineering News, 2013, 91(26): 21-22.
1798-1809.
[73] LI Y, WEI X, HAN S, et al. MnO 2 electrocatalysts coordinating (下转第 2347 页)