Page 52 - 《精细化工》2023年第11期
P. 52
·2364· 精细化工 FINE CHEMICALS 第 40 卷
多种生物质材料如纤维素、壳聚糖、明胶和淀粉等 oxidized carboxymethyl cellulose with excellent adsorption and
+
共同构筑复合水凝胶,有望提高水凝胶的本体性能 sensing abilities for Ag [J]. International Journal of Biological
Macromolecules, 2022, 213: 955-966.
和应用优势,从而促进其在可穿戴材料和人工智能 [16] WANG Y F, TEBYETEKERWA M, LIU Y, et al. Extremely
等方面的应用; stretchable and healable ionic conductive hydrogels fabricated by
surface competitive coordination for human-motion detection[J].
(3)功能化水凝胶普遍存在收缩过程所需时间
Chemical Engineering Journal, 2021, 420: 127637.
比溶胀过程长的情况,这将不能有效阻碍刺激物的 [17] HAN L, HUANG H L, LI J F, et al. A novel redox bromide-ion additive
扩散,而导致传感应用响应时间过长。对于生物质 hydrogel electrolyte for flexible Zn-ion hybrid supercapacitors with
boosted energy density and controllable zinc deposition[J]. Journal of
基水凝胶传感器,可以通过引入功能填料和调整微
Materials Chemistry A, 2020, 8(30): 15042-15050.
观结构来实现水凝胶传感器的快速响应和有效传感。 [18] BAI L, JIN Y, SHANG X, et al. Highly synergistic, electromechanical
and mechanochromic dual-sensing ionic skin with multiple monitoring,
参考文献: antibacterial, self-healing, and anti-freezing functions[J]. Journal of
Materials Chemistry A, 2021, 9(42): 23916-23928.
[1] CHEN Q, TAN X F, LIU Y G, et al. Biomass-derived porous graphitic
[19] PALANTÖKEN S, BETHKE K, ZIVANOVIC V, et al. Cellulose
carbon materials for energy and environmental applications[J].
Journal of Materials Chemistry A, 2020, 8(12): 5773-5811. hydrogels physically crosslinked by glycine: Synthesis,
[2] WANG J S, ZHANG X, LI Z, et al. Recent progress of biomass- characterization, thermal and mechanical properties[J]. Journal of
Applied Polymer Science, 2019, 137(7): 48380.
derived carbon materials for supercapacitors[J]. Journal of Power
[20] FORERO-DORIA O, POLO E, MARICAN A, et al. Supramolecular
Sources, 2020, 451: 227794.
hydrogels based on cellulose for sustained release of therapeutic
[3] XU C, PAONE E, RODRÍGUEZ-PADRÓN D, et al. Recent catalytic
routes for the preparation and the upgrading of biomass derived substances with antimicrobial and wound healing properties[J].
furfural and 5-hydroxymethylfurfural[J]. Chemical Society Reviews, Carbohydrate Polymers, 2020, 242: 116383.
[21] KRÜGER M, OOSTERHOFF L A, VAN WOLFEREN M E, et al.
2020, 49(13): 4273-4306.
[4] MU R H, LIU B, CHEN X, et al. Hydrogel adsorbent in industrial Cellulose nanofibril hydrogel promotes hepatic differentiation of
wastewater treatment and ecological environment protection[J]. human liver organoids[J]. Advanced Healthcare Materials, 2020, 9(6):
Environmental Technology & Innovation, 2020, 20: 101107. 1901658.
[5] SENNAKESAVAN G, MOSTAKHDEMIN M, DKHAR L, et al. [22] SU C Y, LI D, WANG L J, et al. Green double crosslinked starch-
Acrylic acid/acrylamide based hydrogels and its properties-A alginate hydrogel regulated by sustained calcium ion-gluconolactone
review[J]. Polymer Degradation and Stability, 2020, 180: 109308. release for human motion monitoring[J]. Chemical Engineering
[6] CHIMENE D, KAUNAS R, GAHARWAR A K. Hydrogel bioink Journal, 2023, 455: 140653.
reinforcement for additive manufacturing: A focused review of [23] JIAO Y, LU Y, LU K Y, et al. Highly stretchable and self-healing
emerging strategies[J]. Advanced Materials, 2020, 32(1): 1902026. cellulose nanofiber-mediated conductive hydrogel towards strain
[7] THAKUR S, VERMA A, KUMAR V, et al. Cellulosic sensing application[J]. Journal of Colloid and Interface Science, 2021,
biomass-based sustainable hydrogels for wastewater remediation: 597: 171-181.
Chemistry and prospective[J]. Fuel, 2022, 309: 122114. [24] JIANG H D, ZHU Y C, YE X K, et al. Graphene hydrogel film
[8] SETHI S, SARUCHI M. Biopolymer starch-gelatin embedded with adsorbed with redox-active molecule toward energy storage device
silver nanoparticle–based hydrogel composites for antibacterial with improved energy density and unfading superior rate capability
application[J]. Biomass Conversion and Biorefinery, 2022, 12(11): [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9896-9905.
5363-5384. [25] MORSHEDLOO F, KHOSHFETRAT A B, KAZEMI D, et al. Gelatin
[9] LI J, CHEE H L, CHONG Y T, et al. Hofmeister effect mediated improves peroxidase-mediated alginate hydrogel characteristics as a
strong phema-gelatin hydrogel actuator[J]. ACS Applied Materials & potential injectable hydrogel for soft tissue engineering applications
Interfaces, 2022, 14(20): 23826-23838. [J]. Journal of Biomedical Materials Research Part B: Applied
[10] BISWAS M C, JONY B, NANDY P K, et al. Recent advancement of Biomaterials, 2020, 108(7): 2950-2960.
biopolymers and their potential biomedical applications[J]. Journal of [26] DONG H B, LI J W, ZHAO S Y, et al. Investigation of a biomass
Polymers and the Environment, 2021, 30(1): 51-74. hydrogel electrolyte naturally stabilizing cathodes for zinc-ion batteries
[11] OH S, KIM J, KIM Y, et al. Silk sericin-polyethyleneimine hybrid [J]. ACS Applied Materials & Interfaces, 2021, 13(1): 745-754.
hydrogel with excellent structural stability for Cr(Ⅵ ) removal[J]. [27] VERMA A, THAKUR S, MAMBA G, et al. Graphite modified sodium
Macromolecular Research, 2021, 29(12): 895-904. alginate hydrogel composite for efficient removal of malachite green
[12] SAEKI K, HIRAMATSU H, HORI A, et al. Sacrificial dye[J]. International Journal of Biological Macromolecules, 2020,
alginate-assisted microfluidic engineering of cell-supportive protein 148: 1130-1139.
microfibers for hydrogel-based cell encapsulation[J]. ACS Omega, [28] BIAN C, CHENG Y F, ZHU W H, et al. A novel optical fiber
2020, 5(34): 21641-21650. mach-zehnder interferometer based on the calcium alginate hydrogel
[13] MEHRA S, NISAR S, CHAUHAN S, et al. Soy protein-based film for humidity sensing[J]. IEEE Sensors Journal, 2020, 20(11):
hydrogel under microwave-induced grafting of acrylic acid and 5759-5765.
4-(4-hydroxyphenyl) butanoic acid: A potential vehicle for controlled [29] TU T T, ZHANG S S, LI T Y, et al. Tissue-like conductive
drug delivery in oral cavity bacterial infections[J]. ACS Omega, 2020, Ti 3C 2/sodium alginate hybrid hydrogel for electrochemical sensing[J].
5(34): 21610-21622. ACS Applied Materials & Interfaces, 2022, 14(51): 57311-57320.
[14] KHAN E, OZALTIN K, BERNAL-BALLEN A, et al. Renewable [30] ALTAF F, NIAZI M B K, JAHAN Z, et al. Synthesis and
mixed hydrogels based on polysaccharide and protein for release of characterization of PVA/starch hydrogel membranes incorporating
agrochemicals and soil conditioning[J]. Sustainability, 2021, 13(18): essential oils aimed to be used in wound dressing applications[J].
10439. Journal of Polymers and the Environment, 2020, 29(1): 156-174.
[15] HE X Y, JIA H, SUN N, et al. Fluorescent hydrogels based on [31] YANG X, SU G H, HUANG X, et al. Noncovalent assembly enabled