Page 52 - 《精细化工》2023年第11期
P. 52

·2364·                            精细化工   FINE CHEMICALS                                 第 40 卷

            多种生物质材料如纤维素、壳聚糖、明胶和淀粉等                                 oxidized carboxymethyl cellulose with excellent adsorption and
                                                                                   +
            共同构筑复合水凝胶,有望提高水凝胶的本体性能                                 sensing abilities for Ag [J]. International Journal of Biological
                                                                   Macromolecules, 2022, 213: 955-966.
            和应用优势,从而促进其在可穿戴材料和人工智能                             [16]  WANG Y F, TEBYETEKERWA  M, LIU  Y,  et al. Extremely
            等方面的应用;                                                stretchable and healable ionic conductive hydrogels fabricated by
                                                                   surface competitive  coordination for human-motion detection[J].
                (3)功能化水凝胶普遍存在收缩过程所需时间
                                                                   Chemical Engineering Journal, 2021, 420: 127637.
            比溶胀过程长的情况,这将不能有效阻碍刺激物的                             [17]  HAN L, HUANG H L, LI J F, et al. A novel redox bromide-ion additive
            扩散,而导致传感应用响应时间过长。对于生物质                                 hydrogel electrolyte for flexible Zn-ion hybrid supercapacitors with
                                                                   boosted energy density and controllable zinc deposition[J]. Journal of
            基水凝胶传感器,可以通过引入功能填料和调整微
                                                                   Materials Chemistry A, 2020, 8(30): 15042-15050.
            观结构来实现水凝胶传感器的快速响应和有效传感。                            [18]  BAI L, JIN Y, SHANG X, et al. Highly synergistic, electromechanical
                                                                   and mechanochromic dual-sensing ionic skin with multiple monitoring,
            参考文献:                                                  antibacterial, self-healing, and anti-freezing functions[J]. Journal of
                                                                   Materials Chemistry A, 2021, 9(42): 23916-23928.
            [1]   CHEN Q, TAN X F, LIU Y G, et al. Biomass-derived porous graphitic
                                                               [19]  PALANTÖKEN S, BETHKE K, ZIVANOVIC V,  et al. Cellulose
                 carbon materials for energy and environmental applications[J].
                 Journal of Materials Chemistry A, 2020, 8(12): 5773-5811.   hydrogels  physically  crosslinked  by  glycine:  Synthesis,
            [2]   WANG J S, ZHANG X, LI Z,  et al. Recent progress of biomass-   characterization, thermal  and mechanical properties[J]. Journal of
                                                                   Applied Polymer Science, 2019, 137(7): 48380.
                 derived carbon materials for supercapacitors[J]. Journal of Power
                                                               [20]  FORERO-DORIA O, POLO E, MARICAN A, et al. Supramolecular
                 Sources, 2020, 451: 227794.
                                                                   hydrogels based on cellulose for sustained release of therapeutic
            [3]   XU C, PAONE E, RODRÍGUEZ-PADRÓN D, et al. Recent catalytic
                 routes for the preparation and the upgrading of biomass derived   substances with antimicrobial and wound healing properties[J].
                 furfural and 5-hydroxymethylfurfural[J]. Chemical Society Reviews,   Carbohydrate Polymers, 2020, 242: 116383.
                                                               [21]  KRÜGER M, OOSTERHOFF L A, VAN WOLFEREN M E, et al.
                 2020, 49(13): 4273-4306.
            [4]   MU R H, LIU B, CHEN X, et al. Hydrogel adsorbent in industrial   Cellulose  nanofibril hydrogel  promotes hepatic differentiation of
                 wastewater treatment and ecological environment protection[J].   human liver organoids[J]. Advanced Healthcare Materials, 2020, 9(6):
                 Environmental Technology & Innovation, 2020, 20: 101107.   1901658.
            [5]   SENNAKESAVAN G, MOSTAKHDEMIN M, DKHAR L,  et al.   [22]  SU C Y, LI D, WANG L J, et al. Green double crosslinked starch-
                 Acrylic  acid/acrylamide based hydrogels and its properties-A   alginate hydrogel regulated by sustained calcium ion-gluconolactone
                 review[J]. Polymer Degradation and Stability, 2020, 180: 109308.   release for human motion monitoring[J]. Chemical Engineering
            [6]   CHIMENE D, KAUNAS R, GAHARWAR  A K. Hydrogel bioink   Journal, 2023, 455: 140653.
                 reinforcement for  additive manufacturing: A focused review of   [23]  JIAO Y,  LU Y,  LU  K  Y,  et al. Highly stretchable and self-healing
                 emerging strategies[J]. Advanced Materials, 2020, 32(1): 1902026.   cellulose nanofiber-mediated  conductive hydrogel towards strain
            [7]   THAKUR S,  VERMA A, KUMAR  V,  et al. Cellulosic   sensing application[J]. Journal of Colloid and Interface Science, 2021,
                 biomass-based sustainable hydrogels  for wastewater remediation:   597: 171-181.
                 Chemistry and prospective[J]. Fuel, 2022, 309: 122114.   [24]  JIANG H D, ZHU Y C, YE  X  K,  et al. Graphene hydrogel film
            [8]   SETHI S, SARUCHI M. Biopolymer starch-gelatin embedded with   adsorbed with redox-active molecule toward energy storage device
                 silver  nanoparticle–based hydrogel composites for antibacterial   with improved energy density and unfading superior rate capability
                 application[J]. Biomass Conversion and Biorefinery, 2022, 12(11):   [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9896-9905.
                 5363-5384.                                    [25]  MORSHEDLOO F, KHOSHFETRAT A B, KAZEMI D, et al. Gelatin
            [9]   LI J, CHEE H  L,  CHONG  Y T,  et al. Hofmeister effect  mediated   improves peroxidase-mediated alginate hydrogel characteristics as a
                 strong phema-gelatin hydrogel actuator[J]. ACS Applied Materials &   potential injectable hydrogel for soft tissue engineering applications
                 Interfaces, 2022, 14(20): 23826-23838.            [J]. Journal of Biomedical Materials Research Part B: Applied
            [10]  BISWAS M C, JONY B, NANDY P K, et al. Recent advancement of   Biomaterials, 2020, 108(7): 2950-2960.
                 biopolymers and their potential biomedical applications[J]. Journal of   [26]  DONG H B, LI J W, ZHAO S Y, et al. Investigation of a biomass
                 Polymers and the Environment, 2021, 30(1): 51-74.   hydrogel electrolyte naturally stabilizing cathodes for zinc-ion batteries
            [11]  OH S, KIM J, KIM Y, et al. Silk sericin-polyethyleneimine hybrid   [J]. ACS Applied Materials & Interfaces, 2021, 13(1): 745-754.
                 hydrogel with excellent structural stability for Cr(Ⅵ ) removal[J].   [27]  VERMA A, THAKUR S, MAMBA G, et al. Graphite modified sodium
                 Macromolecular Research, 2021, 29(12): 895-904.   alginate hydrogel composite for efficient removal of malachite green
            [12]  SAEKI K, HIRAMATSU H, HORI A,  et al. Sacrificial   dye[J]. International Journal of Biological Macromolecules, 2020,
                 alginate-assisted microfluidic engineering of cell-supportive protein   148: 1130-1139.
                 microfibers for hydrogel-based cell encapsulation[J]. ACS Omega,   [28]  BIAN C, CHENG Y F, ZHU W  H,  et al. A novel optical fiber
                 2020, 5(34): 21641-21650.                         mach-zehnder interferometer based on the calcium alginate hydrogel
            [13]  MEHRA S, NISAR S, CHAUHAN S,  et al. Soy protein-based   film for humidity sensing[J]. IEEE Sensors Journal, 2020, 20(11):
                 hydrogel under microwave-induced grafting of acrylic acid and   5759-5765.
                 4-(4-hydroxyphenyl) butanoic acid: A potential vehicle for controlled   [29]  TU T T, ZHANG S S, LI T Y,  et al. Tissue-like conductive
                 drug delivery in oral cavity bacterial infections[J]. ACS Omega, 2020,   Ti 3C 2/sodium alginate hybrid hydrogel for electrochemical sensing[J].
                 5(34): 21610-21622.                               ACS Applied Materials & Interfaces, 2022, 14(51): 57311-57320.
            [14]  KHAN E, OZALTIN K, BERNAL-BALLEN A,  et al. Renewable   [30]  ALTAF F, NIAZI M B K, JAHAN Z,  et al. Synthesis and
                 mixed hydrogels based on polysaccharide and protein for release of   characterization of PVA/starch hydrogel membranes incorporating
                 agrochemicals and soil conditioning[J]. Sustainability, 2021, 13(18):   essential oils aimed to be used in wound dressing applications[J].
                 10439.                                            Journal of Polymers and the Environment, 2020, 29(1): 156-174.
            [15]  HE X  Y, JIA H,  SUN N,  et al. Fluorescent hydrogels based on   [31]  YANG X, SU G H, HUANG X, et al. Noncovalent assembly enabled
   47   48   49   50   51   52   53   54   55   56   57