Page 53 - 《精细化工》2023年第11期
P. 53

第 11 期                         白忠薛,等:  生物质基水凝胶的传感应用进展                                   ·2365·


                 strong yet tough materials with room-temperature malleability and   for glucose biosensing[J]. Journal of Nanoscience and Nanotechnology,
                 healability[J]. ACS Nano, 2022, 16: 13002.        2020, 20(9): 5333-5337.
            [32]  QAMRUZZAMAN M, AHMED F, MONDAL M I H. An overview   [49]  KIM G J, KIM  K  O. Novel glucose-responsive of the transparent
                 on starch-based sustainable hydrogels: Potential applications and   nanofiber hydrogel patches as a wearable biosensor via electrospinning
                 aspects[J]. Journal  of Polymers and the Environment, 2021, 30(1):   [J]. Scientific Reports, 2020, 10(1): 18858.
                 19-50.                                        [50]  WANG Z Q, CHENG F C, CAI H C,  et al. Robust versatile
            [33]  XU Y L, XIAO X, FAN X F, et al. Low cost, facile, environmentally   nanocellulose/polyvinyl alcohol/carbon dot hydrogels for biomechanical
                 friendly all biomass-based squid ink-starch hydrogel for efficient   sensing[J]. Carbohydrate Polymers, 2021, 259: 117753.
                 solar-steam generation[J]. Journal  of  Materials Chemistry A, 2020,   [51]  LIANG Z, ZHANG J  Y, WU C,  et al. Flexible and  self-healing
                 8(45): 24108-24116.                               electrochemical hydrogel sensor with high efficiency toward glucose
            [34]  BAMBAEERO A, BAZARGAN-LARI R. Simultaneous removal of   monitoring[J]. Biosensors and Bioelectronics, 2020, 155: 112105.
                 copper and zinc ions by low cost natural snail shell/hydroxyapatite/   [52]  XI H Y, LI X, LIU Q Y, et al. Cationic polymer-based plasmonic sensor
                 chitosan composite[J]. Chinese Journal of Chemical Engineering,   array that discriminates proteins[J]. Analyst, 2018, 143: 5578-5582.
                 2021, 33: 221-230.                            [53]  KIM H J, CHOI W S, KIM J,  et al. Highly sensitive three-
            [35]  LI Y C, MA J L, JIN D N, et al. Copper oxide functionalized chitosan   dimensional interdigitated microelectrode biosensors embedded with
                 hybrid hydrogels for  highly efficient photocatalytic-reforming  of   porosity tunable hydrogel for detecting proteins[J]. Sensors and
                 biomass-based monosaccharides to lactic acid[J]. Applied Catalysis   Actuators B: Chemical, 2020, 302: 127190.
                 B: Environmental, 2021, 291: 120123.          [54]  PILOTO A M  L,  RIBEIRO, D S M, RODRIGUES S S M,  et al.
            [36]  DETSI A, KAVETSOU E, KOSTOPOULOU I, et al. Nanosystems   Cellulose-based hydrogel on quantum dots with molecularly
                 for  the encapsulation  of natural products: The case of chitosan   imprinted polymers for the detection of CA19-9 protein cancer
                 biopolymer as a matrix[J]. Pharmaceutics, 2020, 12(7): 669.   biomarker[J]. Microchimica Acta, 2022, 189: 134.
            [37]  HSUEH T J, WU S S. Highly sensitive Co 3O 4 nanoparticles/mems   [55]  SINGH N, ALI  M A, RAI P,  et al. Dual-modality  microfluidic
                 NO 2 gas sensor with the adsorption of the Au nanoparticles[J].   biosensor based on nanoengineered mesoporous graphene hydrogels
                 Sensors and Actuators B: Chemical, 2021, 329: 129201.   [J]. Lab Chip, 2020, 20(4): 760-777.
            [38]  LI C L, LIU G,  WANG S,  et al. Polyvinyl  alcohol/quaternary   [56]  LIN Y N, SUN Y L, DAI Y X, et al. A "signal-on" chemiluminescence
                 ammonium chitosan hydrogel electrolyte for sensing supercapacitors   biosensor for  thrombin detection  based on DNA functionalized
                 with excellent performance[J]. Journal of Energy Storage, 2022, 46:   magnetic sodium alginate hydrogel and metalloporphyrinic metal-
                 103918.                                           organic framework nanosheets[J]. Talanta, 2020, 207: 120300.
            [39]  HAO F Y, MAIMAITIYIMING X, SUN S. 3D printed multifunctional   [57]  YANG  L  L, WANG H, LÜ H T,  et al. Phytic acid functionalized
                 self-adhesive and conductive polyacrylamide/chitosan/sodium   antifouling conducting polymer hydrogel for electrochemical detection
                 carboxymethyl  cellulose/CNT hydrogels as flexible sensors[J].   of microrna[J]. Analytica Chimica Acta, 2020, 1124: 104-112.
                 Macromolecular Chemistry and Physics, 2023, 224(2): 2200272.   [58]  LANGFORD G J, RAEBURN J, FERRIER D C, et al. Morpholino
            [40]  LING Z, MA J M, ZHANG S, et al. Stretchable and fatigue resistant   oligonucleotide cross-linked hydrogels as portable optical oligonucleotide
                 hydrogels constructed by natural galactomannan for flexible sensing   biosensors[J]. ACS Sensors, 2019, 4(1): 185-191.
                 application[J]. International Journal of Biological Macromolecules,   [59]  MOHAMMADI S, MOHAMMADI S, SALIMI A. A 3D hydrogel
                 2022, 216: 193-202.                               based on chitosan and carbon dots for sensitive fluorescence detection
            [41]  LI L, MENG J, ZHANG M T, et al. Recent advances in conductive   of microrna-21 in breast cancer cells[J]. Talanta, 2021, 224: 121895.
                 polymer hydrogel composites and  nanocomposites for flexible   [60]  YANG J, FU S L, LUO F, et al. Homogeneous photoelectrochemical
                 electrochemical supercapacitors[J]. Chemical Communications, 2022,   biosensor for microRNA based on target-responsive hydrogel
                 58(2): 185-207.                                   coupled with exonuclease  Ⅲ  and nicking endonuclease Nb.BbvCI
            [42]  SUGIARTO S, PONG R R, TAN Y C, et al. Advances in sustainable   assistant cascaded amplification  strategy[J]. Microchimica Acta,
                 polymeric materials from lignocellulosic biomass[J]. Materials Today   2021, 188(8): 267.
                 Chemistry, 2022, 26: 101022.                  [61]  FAROOQ A, PATOARY M K, ZHANG M L, et al. Cellulose from
            [43]  TAJIK S, OROOJI Y, GHAZANFARI Z,  et al. Nanomaterials   sources to nanocellulose and an overview of synthesis and properties
                 modified electrodes for electrochemical detection of SudanⅠ in   of nanocellulose/zinc oxide nanocomposite materials[J]. International
                 food[J]. Journal of  Food Measurement and Characterization, 2021,   Journal of Biological Macromolecules, 2020, 154: 1050-1073.
                 15(4): 3837-3852.                             [62]  WANG L, GUO W, ZHU H X, et al. Preparation and properties of a
            [44]  QIN X X, LIU J X, ZHANG Z, et al. Microfluidic paper-based chips   dual-function cellulose nanofiber-based bionic biosensor for detecting
                 in rapid detection: Current status, challenges, and perspectives[J].   silver ions and acetylcholinesterase[J]. Journal of Hazardous Materials,
                 TrAC Trends in Analytical Chemistry, 2021, 143: 116371.   2021, 403: 123921.
            [45]  DAI L, WANG Y, ZOU X J, et al. Ultrasensitive physical, bio, and   [63]  SU C Y, LI D, WANG L J, et al. Green double crosslinked starch-
                 chemical sensors  derived from 1-,  2-, and 3-D nanocellulosic   alginate hydrogel regulated by sustained calcium ion-gluconolactone
                 materials[J]. Small, 2020, 16(13): 1906567.       release for human motion monitoring[J]. Chemical Engineering
            [46]  SHEN Y H, WANG Z L, WANG Y C,  et al. A  self-healing   Journal, 2023, 455: 140653.
                 carboxymethyl chitosan/oxidized carboxymethyl cellulose hydrogel   [64]  LI G, LI C L, LI G D, et al. Development of conductive hydrogels for
                 with fluorescent bioprobes  for glucose detection[J]. Carbohydrate   fabricating flexible strain sensors[J]. Small, 2022, 18(5): 2101518.
                 Polymers, 2021, 274: 118642.                  [65]  QU X Y, ZHAO  Y, CHEN Z A,  et al. Thermoresponsive lignin-
            [47]  GUNATILAKE  U B, GARCIA-REY S, OJEDA E,  et al. TiO 2   reinforced poly(ionic liquid) hydrogel wireless strain sensor[J].
                 nanotubes alginate hydrogel scaffold for  rapid sensing of sweat   Research, 2021, 2021: 9845482.
                 biomarkers: Lactate and glucose[J]. ACS Applied Materials &   [66]  ZHENG H Y, LIN N, HE Y Y, et al. Self-healing, self-adhesive silk
                 Interfaces, 2021, 13(31): 37734-37745.            fibroin conductive hydrogel as a flexible strain sensor[J]. ACS
            [48]  KIM H S, LEE J S, KIM M I. Poly-γ-glutamic acid/chitosan hydrogel   Applied Materials & Interfaces, 2021, 13(33): 40013-40031.
                 nanoparticles entrapping glucose oxidase and magnetic nanoparticles         (下转第 2385 页)
   48   49   50   51   52   53   54   55   56   57   58