Page 53 - 《精细化工》2023年第11期
P. 53
第 11 期 白忠薛,等: 生物质基水凝胶的传感应用进展 ·2365·
strong yet tough materials with room-temperature malleability and for glucose biosensing[J]. Journal of Nanoscience and Nanotechnology,
healability[J]. ACS Nano, 2022, 16: 13002. 2020, 20(9): 5333-5337.
[32] QAMRUZZAMAN M, AHMED F, MONDAL M I H. An overview [49] KIM G J, KIM K O. Novel glucose-responsive of the transparent
on starch-based sustainable hydrogels: Potential applications and nanofiber hydrogel patches as a wearable biosensor via electrospinning
aspects[J]. Journal of Polymers and the Environment, 2021, 30(1): [J]. Scientific Reports, 2020, 10(1): 18858.
19-50. [50] WANG Z Q, CHENG F C, CAI H C, et al. Robust versatile
[33] XU Y L, XIAO X, FAN X F, et al. Low cost, facile, environmentally nanocellulose/polyvinyl alcohol/carbon dot hydrogels for biomechanical
friendly all biomass-based squid ink-starch hydrogel for efficient sensing[J]. Carbohydrate Polymers, 2021, 259: 117753.
solar-steam generation[J]. Journal of Materials Chemistry A, 2020, [51] LIANG Z, ZHANG J Y, WU C, et al. Flexible and self-healing
8(45): 24108-24116. electrochemical hydrogel sensor with high efficiency toward glucose
[34] BAMBAEERO A, BAZARGAN-LARI R. Simultaneous removal of monitoring[J]. Biosensors and Bioelectronics, 2020, 155: 112105.
copper and zinc ions by low cost natural snail shell/hydroxyapatite/ [52] XI H Y, LI X, LIU Q Y, et al. Cationic polymer-based plasmonic sensor
chitosan composite[J]. Chinese Journal of Chemical Engineering, array that discriminates proteins[J]. Analyst, 2018, 143: 5578-5582.
2021, 33: 221-230. [53] KIM H J, CHOI W S, KIM J, et al. Highly sensitive three-
[35] LI Y C, MA J L, JIN D N, et al. Copper oxide functionalized chitosan dimensional interdigitated microelectrode biosensors embedded with
hybrid hydrogels for highly efficient photocatalytic-reforming of porosity tunable hydrogel for detecting proteins[J]. Sensors and
biomass-based monosaccharides to lactic acid[J]. Applied Catalysis Actuators B: Chemical, 2020, 302: 127190.
B: Environmental, 2021, 291: 120123. [54] PILOTO A M L, RIBEIRO, D S M, RODRIGUES S S M, et al.
[36] DETSI A, KAVETSOU E, KOSTOPOULOU I, et al. Nanosystems Cellulose-based hydrogel on quantum dots with molecularly
for the encapsulation of natural products: The case of chitosan imprinted polymers for the detection of CA19-9 protein cancer
biopolymer as a matrix[J]. Pharmaceutics, 2020, 12(7): 669. biomarker[J]. Microchimica Acta, 2022, 189: 134.
[37] HSUEH T J, WU S S. Highly sensitive Co 3O 4 nanoparticles/mems [55] SINGH N, ALI M A, RAI P, et al. Dual-modality microfluidic
NO 2 gas sensor with the adsorption of the Au nanoparticles[J]. biosensor based on nanoengineered mesoporous graphene hydrogels
Sensors and Actuators B: Chemical, 2021, 329: 129201. [J]. Lab Chip, 2020, 20(4): 760-777.
[38] LI C L, LIU G, WANG S, et al. Polyvinyl alcohol/quaternary [56] LIN Y N, SUN Y L, DAI Y X, et al. A "signal-on" chemiluminescence
ammonium chitosan hydrogel electrolyte for sensing supercapacitors biosensor for thrombin detection based on DNA functionalized
with excellent performance[J]. Journal of Energy Storage, 2022, 46: magnetic sodium alginate hydrogel and metalloporphyrinic metal-
103918. organic framework nanosheets[J]. Talanta, 2020, 207: 120300.
[39] HAO F Y, MAIMAITIYIMING X, SUN S. 3D printed multifunctional [57] YANG L L, WANG H, LÜ H T, et al. Phytic acid functionalized
self-adhesive and conductive polyacrylamide/chitosan/sodium antifouling conducting polymer hydrogel for electrochemical detection
carboxymethyl cellulose/CNT hydrogels as flexible sensors[J]. of microrna[J]. Analytica Chimica Acta, 2020, 1124: 104-112.
Macromolecular Chemistry and Physics, 2023, 224(2): 2200272. [58] LANGFORD G J, RAEBURN J, FERRIER D C, et al. Morpholino
[40] LING Z, MA J M, ZHANG S, et al. Stretchable and fatigue resistant oligonucleotide cross-linked hydrogels as portable optical oligonucleotide
hydrogels constructed by natural galactomannan for flexible sensing biosensors[J]. ACS Sensors, 2019, 4(1): 185-191.
application[J]. International Journal of Biological Macromolecules, [59] MOHAMMADI S, MOHAMMADI S, SALIMI A. A 3D hydrogel
2022, 216: 193-202. based on chitosan and carbon dots for sensitive fluorescence detection
[41] LI L, MENG J, ZHANG M T, et al. Recent advances in conductive of microrna-21 in breast cancer cells[J]. Talanta, 2021, 224: 121895.
polymer hydrogel composites and nanocomposites for flexible [60] YANG J, FU S L, LUO F, et al. Homogeneous photoelectrochemical
electrochemical supercapacitors[J]. Chemical Communications, 2022, biosensor for microRNA based on target-responsive hydrogel
58(2): 185-207. coupled with exonuclease Ⅲ and nicking endonuclease Nb.BbvCI
[42] SUGIARTO S, PONG R R, TAN Y C, et al. Advances in sustainable assistant cascaded amplification strategy[J]. Microchimica Acta,
polymeric materials from lignocellulosic biomass[J]. Materials Today 2021, 188(8): 267.
Chemistry, 2022, 26: 101022. [61] FAROOQ A, PATOARY M K, ZHANG M L, et al. Cellulose from
[43] TAJIK S, OROOJI Y, GHAZANFARI Z, et al. Nanomaterials sources to nanocellulose and an overview of synthesis and properties
modified electrodes for electrochemical detection of SudanⅠ in of nanocellulose/zinc oxide nanocomposite materials[J]. International
food[J]. Journal of Food Measurement and Characterization, 2021, Journal of Biological Macromolecules, 2020, 154: 1050-1073.
15(4): 3837-3852. [62] WANG L, GUO W, ZHU H X, et al. Preparation and properties of a
[44] QIN X X, LIU J X, ZHANG Z, et al. Microfluidic paper-based chips dual-function cellulose nanofiber-based bionic biosensor for detecting
in rapid detection: Current status, challenges, and perspectives[J]. silver ions and acetylcholinesterase[J]. Journal of Hazardous Materials,
TrAC Trends in Analytical Chemistry, 2021, 143: 116371. 2021, 403: 123921.
[45] DAI L, WANG Y, ZOU X J, et al. Ultrasensitive physical, bio, and [63] SU C Y, LI D, WANG L J, et al. Green double crosslinked starch-
chemical sensors derived from 1-, 2-, and 3-D nanocellulosic alginate hydrogel regulated by sustained calcium ion-gluconolactone
materials[J]. Small, 2020, 16(13): 1906567. release for human motion monitoring[J]. Chemical Engineering
[46] SHEN Y H, WANG Z L, WANG Y C, et al. A self-healing Journal, 2023, 455: 140653.
carboxymethyl chitosan/oxidized carboxymethyl cellulose hydrogel [64] LI G, LI C L, LI G D, et al. Development of conductive hydrogels for
with fluorescent bioprobes for glucose detection[J]. Carbohydrate fabricating flexible strain sensors[J]. Small, 2022, 18(5): 2101518.
Polymers, 2021, 274: 118642. [65] QU X Y, ZHAO Y, CHEN Z A, et al. Thermoresponsive lignin-
[47] GUNATILAKE U B, GARCIA-REY S, OJEDA E, et al. TiO 2 reinforced poly(ionic liquid) hydrogel wireless strain sensor[J].
nanotubes alginate hydrogel scaffold for rapid sensing of sweat Research, 2021, 2021: 9845482.
biomarkers: Lactate and glucose[J]. ACS Applied Materials & [66] ZHENG H Y, LIN N, HE Y Y, et al. Self-healing, self-adhesive silk
Interfaces, 2021, 13(31): 37734-37745. fibroin conductive hydrogel as a flexible strain sensor[J]. ACS
[48] KIM H S, LEE J S, KIM M I. Poly-γ-glutamic acid/chitosan hydrogel Applied Materials & Interfaces, 2021, 13(33): 40013-40031.
nanoparticles entrapping glucose oxidase and magnetic nanoparticles (下转第 2385 页)