Page 229 - 《精细化工》2023年第12期
P. 229
第 12 期 李思煜,等: 纳米 Fe 3 O 4 对沼液 MFC 产电特性与有机物降解的影响 ·2771·
效率提高的主要原因;纳米 Fe 3 O 4 有效刺激了芽孢 Electrochemical degradation of hygromycin catalyzed by Fe 3O 4
magnetic nanoparticles[J]. Journal of Electrochemistry (电化学),
八叠球菌属在阳极碳毡上的生长,促进 MFC 阳极室
2022, 28(4): 12-21.
发生反硝化作用,为 MFC 用于高氨氮有机废水处理 [18] SUN Y (孙扬), LIU W P (刘维平), XU J (徐杰). Effect of anode
提供了理论支撑。 modification on microbial fuel cell power production and wastewater
treatment[J]. Technology of Water Treatment (水处理技术), 2020,
参考文献: 46(10): 39-43, 49.
[19] CHEN M (陈梅), WANG F (王芳), ZHANG D L (张德俐), et al.
[1] ZHANG D (张丹), PENG S (彭双), WANG D Q (王丹青), et al. Effect of structural properties of biochar on the adsorption
Dynamics of antibiotic resistance genes during biodigestion of characteristics of ammonia nitrogen[J]. Environmental Science (环境
chicken and pig manure[J]. Environmental Science (环境科学): 科学), 2019, 40(12): 5421-5429.
2023, 44(3): 1780-1791. [20] DI L, ZHANG Q G, WANG F, et al. Effect of nano-Fe 3O 4 biochar on
[2] JIAO Y (焦燕), ZHANG G D (张国栋), ZHAO Q L (赵庆良). anaerobic digestion of chicken manure under high ammonia nitrogen
Long-term operational stability study of microbial fuel cell with cow concentration[J]. Journal of Cleaner Production, 2022, 375: 134107.
dung mixture[J]. Environmental Science (环境科学), 2014, 35(5): [21] ZHANG B P, ZHOU S F, ZHOU L H, et al. Pyrolysis
1981-1987. temperature-dependent electron transfer capacities of dissolved
[3] SAMORAJ M, MIRONIUK M, IZYDORCZYK G, et al. The organic matters derived from wheat straw biochar[J]. Science of the
challenges and perspectives for anaerobic digestion of animal waste
Total Environment, 2019, 696: 133895.
and fertilizer application of the digestate[J]. Chemosphere, 2022,
[22] LIANG P (梁鹏), FAN M Z (范明志), CAO X X (曹效鑫), et al.
295: 133799. Composition and measurement of apparent internal resistance of
[4] ZHANG M H, GAO D W. Microwave-enhanced advanced oxidation microbial fuel cells[J]. Environmental Science (环境科学), 2007,
process of biogas slurry from cow manure anaerobic digester[J]. 28(8): 1894-1898.
Environmental Technology, 2021, 42(12): 1846-1852. [23] KRAKOVÁ L, ŠOLTYS K, BUDIŠ J, et al. Investigation of bacterial
[5] LI W Y (李文英), PENG Z P (彭智平), YU J H (于俊红), et al. and archaeal communities: novel protocols using modern sequencing
Characteristics and risk evaluation of wastewater pollution from by Illumina MiSeq and traditional DGGE-cloning[J]. Extremophiles :
typical intensive pig farms in the Pearl River Delta[J]. Environmental Life Under Extreme Conditions, 2016, 20(5): 795-808.
Science (环境科学), 2013, 34(10): 3963-3968.
[6] HASHMI Z, JATOI A S, AZIZ S, et al. Bio-assisted treatment of [24] BHUSSHAN B, GUPTA V, KOTNALA S. Development of magnetic-
biochar nano-composite: assessment of its physico-chemical
hazardous spent wash via microbial fuel cell. Environmental friendly
properties[J]. Materials Today: Proceedings, 2020, 26: 3271-3274.
approach[J]. Biomass Conversion and Biorefinery, 2021, (2): 1-9.
[25] WANG S, ZHAO J Q, LIU S, et al. Effect of temperature on nitrogen
[7] BUSCH M, MEHAR V, MERTE L R, et al. Adsorption of NO on
Fe 3O 4 (111)[J]. Chemical Physics Letters, 2018, 693: 84-87. removal and electricity generation of a dual-chamber microbial fuel
[8] PENG X H, YU H B, AI L N, et al. Time behavior and capacitance cell[J]. Water, Air, & Soil Pollution, 2018, 229(8): 1-13.
analysis of nano-Fe 3O 4 added microbial fuel cells[J]. Bioresource [26] MIRAN W, NAWAZ M, JANG J, et al. Effect of wastewater
Technology, 2013, 144: 689-692. containing multi-walled carbon nanotubes on dual-chamber microbial
[9] AN T Y, CHANG Y F, XIE J X, et al. Deciphering physicochemical fuel cell performance[J]. RSC Advances, 2016, 6(94): 91314-91319.
properties and enhanced microbial electron transfer capacity by [27] LIU Y F (刘远峰), WANG L (王乐), ZHANG X L (张秀玲) , et al.
magnetic biochar[J]. Bioresource Technology, 2022, 363: 127894. Microbial fuel cell treatment of acetone and ammonia nitrogen
wastewater and simultaneous electricity production performance [J].
[10] PENG X H, YU H B, WANG X, et al. Enhanced performance and
Fine Chemicals (精细化工), 2022, 39(1): 187-193.
capacitance behavior of anode by rolling Fe 3O 4 into activated carbon
in microbial fuel cells[J]. Bioresource Technology, 2012, 121: 450-453. [28] BELL T H, CAMILLONE N, ABRAM K, et al. Hydrocarbon
[11] LIU Q, YANG Y, MEI X, et al. Response of the microbial substrate richness impacts microbial abundance, microbiome
community structure of biofilms to ferric iron in microbial fuel composition, and hydrocarbon loss[J]. Applied Soil Ecology, 2021,
cells[J]. Science of the Total Environment, 2018, 631: 695-701. 165: 104015.
[12] WANG F (王芳), ZHANG D L (张德俐), CHEN M (陈梅), et al. [29] LIU Z D, HE Y H, SHEN R X, et al. Performance and microbial
Study of electricity production and organic matter degradation community of carbon nanotube fixed-bed microbial fuel cell
characteristics of methane microbial fuel cell[J]. Transactions of the continuously fed with hydrothermal liquefied cornstalk biomass[J].
Chinese Society of Agricultural Engineering (农业工程学报), 2019, Bioresource Technology, 2015, 185: 294-301.
35(9): 206-213. [30] WUCHTER C, BANNING E, MINCER T J, et al. Microbial
[13] HICKNER M A, HERRING A M, COUGHLIN E B. Anion diversity and methanogenic activity of Antrim Shale formation
exchange membranes: Current status and moving forward[J]. Journal waters from recently fractured wells[J]. Frontiers in Microbiology,
of Polymer Science Part B: Polymer Physics, 2013, 51(24): 2013, 4: 367.
1727-1735. [31] HASSAN H, JIN B, DONNER E, et al. Microbial community and
[14] LOGAN B E, MURANO C, SCOTT K, et al. Electricity generation bioelectrochemical activities in MFC for degrading phenol and
from cysteine in a microbial fuel cell[J]. Water Research, 2005, producing electricity: Microbial consortia could make differences[J].
39(5): 942-952. Chemical Engineering Journal, 2018, 332: 647-657.
[15] WANG F, ZHANG D L, SHEN X L, et al. Synchronously electricity [32] KIM G T, WEBSTER G, WIMPENNY J W T, et al. Bacterial
generation and degradation of biogas slurry using microbial fuel community structure, compartmentalization and activity in a microbial
cell[J]. Renewable Energy, 2019, 142: 158-166. fuel cell[J]. Journal of Applied Microbiology, 2006, 101(3): 698-710.
[16] LI Y, HAN Q L, YAO Y, et al. Comparative study of yttria-stabilized [33] LI Y F, SHI J, NELSON M C, et al. Impact of different ratios of
zirconia synthesis by co-precipitation and solvothermal methods[J]. feedstock to liquid anaerobic digestion effluent on the performance
Journal of the Minerals, 2019, 71(11): 3806-3813. and microbiome of solid-state anaerobic digesters digesting corn
[17] YING F (应方), XU S S (许珊珊), XU Y B (许燕冰), et al. stover[J]. Bioresource Technology, 2016, 200: 744-752.