Page 229 - 《精细化工》2023年第12期
P. 229

第 12 期                李思煜,等:  纳米 Fe 3 O 4 对沼液 MFC 产电特性与有机物降解的影响                         ·2771·


            效率提高的主要原因;纳米 Fe 3 O 4 有效刺激了芽孢                          Electrochemical degradation of hygromycin catalyzed  by Fe 3O 4
                                                                   magnetic nanoparticles[J]. Journal of Electrochemistry (电化学),
            八叠球菌属在阳极碳毡上的生长,促进 MFC 阳极室
                                                                   2022, 28(4): 12-21.
            发生反硝化作用,为 MFC 用于高氨氮有机废水处理                          [18]  SUN Y (孙扬), LIU W P (刘维平),  XU J (徐杰). Effect of anode
            提供了理论支撑。                                               modification on microbial fuel cell power production and wastewater
                                                                   treatment[J]. Technology of Water Treatment (水处理技术), 2020,
            参考文献:                                                  46(10): 39-43, 49.
                                                               [19]  CHEN M (陈梅),  WANG F (王芳), ZHANG  D L  (张德俐),  et al.
            [1]  ZHANG D (张丹), PENG S (彭双), WANG D  Q (王丹青),  et al.   Effect of structural properties of  biochar on the adsorption
                 Dynamics of antibiotic resistance genes during biodigestion  of   characteristics of ammonia nitrogen[J]. Environmental Science (环境
                 chicken and pig  manure[J]. Environmental Science (环境科学):   科学), 2019, 40(12): 5421-5429.
                 2023, 44(3): 1780-1791.                       [20]  DI L, ZHANG Q G, WANG F, et al. Effect of nano-Fe 3O 4 biochar on
            [2]   JIAO Y (焦燕), ZHANG  G D (张国栋), ZHAO Q  L (赵庆良).   anaerobic digestion of chicken manure under high ammonia nitrogen
                 Long-term operational stability study of microbial fuel cell with cow   concentration[J]. Journal of Cleaner Production, 2022, 375: 134107.
                 dung mixture[J]. Environmental Science (环境科学), 2014, 35(5):   [21]  ZHANG B P,  ZHOU S F, ZHOU L H,  et al. Pyrolysis
                 1981-1987.                                        temperature-dependent electron transfer capacities of dissolved
            [3]   SAMORAJ M,  MIRONIUK M, IZYDORCZYK G,  et al. The   organic matters derived from wheat straw biochar[J]. Science of the
                 challenges and perspectives for anaerobic digestion of animal waste
                                                                   Total Environment, 2019, 696: 133895.
                 and fertilizer application of the digestate[J]. Chemosphere, 2022,
                                                               [22]  LIANG P (梁鹏), FAN M Z (范明志), CAO X X (曹效鑫),  et al.
                 295: 133799.                                      Composition and  measurement of apparent internal resistance of
            [4]   ZHANG M H, GAO D W. Microwave-enhanced advanced oxidation   microbial fuel cells[J]. Environmental Science (环境科学), 2007,
                 process of biogas  slurry from cow manure anaerobic digester[J].   28(8): 1894-1898.
                 Environmental Technology, 2021, 42(12): 1846-1852.   [23]  KRAKOVÁ L, ŠOLTYS K, BUDIŠ J, et al. Investigation of bacterial
            [5]   LI  W Y (李文英),  PENG Z P (彭智平), YU J H (于俊红),  et al.   and archaeal communities: novel protocols using modern sequencing
                 Characteristics and risk evaluation of wastewater pollution from   by Illumina MiSeq and traditional DGGE-cloning[J]. Extremophiles :
                 typical intensive pig farms in the Pearl River Delta[J]. Environmental   Life Under Extreme Conditions, 2016, 20(5): 795-808.
                 Science (环境科学), 2013, 34(10): 3963-3968.
            [6]   HASHMI Z, JATOI A S, AZIZ S,  et al. Bio-assisted treatment of   [24]  BHUSSHAN B, GUPTA V, KOTNALA S. Development of magnetic-
                                                                   biochar nano-composite: assessment of its physico-chemical
                 hazardous spent wash via microbial fuel cell. Environmental friendly
                                                                   properties[J]. Materials Today: Proceedings, 2020, 26: 3271-3274.
                 approach[J]. Biomass Conversion and Biorefinery, 2021, (2): 1-9.
                                                               [25]  WANG S, ZHAO J Q, LIU S, et al. Effect of temperature on nitrogen
            [7]   BUSCH M, MEHAR V, MERTE L R, et al. Adsorption of NO on
                 Fe 3O 4 (111)[J]. Chemical Physics Letters, 2018, 693: 84-87.   removal and electricity generation of a dual-chamber microbial fuel
            [8]   PENG X H, YU H B, AI L N, et al. Time behavior and capacitance   cell[J]. Water, Air, & Soil Pollution, 2018, 229(8): 1-13.
                 analysis of nano-Fe 3O 4 added  microbial fuel cells[J].  Bioresource   [26]  MIRAN W, NAWAZ M, JANG J,  et al. Effect of wastewater
                 Technology, 2013, 144: 689-692.                   containing multi-walled carbon  nanotubes on  dual-chamber  microbial
            [9]   AN T Y, CHANG Y F, XIE J X, et al. Deciphering physicochemical   fuel cell performance[J]. RSC Advances, 2016, 6(94): 91314-91319.
                 properties and enhanced  microbial electron transfer capacity by   [27]  LIU Y F (刘远峰), WANG L (王乐), ZHANG X L (张秀玲) , et al.
                 magnetic biochar[J]. Bioresource Technology, 2022, 363: 127894.   Microbial fuel cell treatment of acetone and ammonia nitrogen
                                                                   wastewater and simultaneous electricity production performance [J].
            [10]  PENG X H, YU H B, WANG X, et al. Enhanced performance and
                                                                   Fine Chemicals (精细化工), 2022, 39(1): 187-193.
                 capacitance behavior of anode by rolling Fe 3O 4 into activated carbon
                 in microbial fuel cells[J]. Bioresource Technology, 2012, 121: 450-453.   [28]  BELL T H, CAMILLONE N, ABRAM K,  et al. Hydrocarbon
            [11]  LIU Q, YANG  Y, MEI X,  et al. Response  of the  microbial   substrate richness impacts  microbial abundance,  microbiome
                 community structure of biofilms to ferric iron in microbial fuel   composition, and hydrocarbon loss[J]. Applied Soil Ecology, 2021,
                 cells[J]. Science of the Total Environment, 2018, 631: 695-701.   165: 104015.
            [12]  WANG F (王芳), ZHANG  D L  (张德俐), CHEN M (陈梅),  et al.   [29]  LIU Z D, HE Y H, SHEN R X,  et al. Performance and microbial
                 Study of electricity production and organic matter degradation   community of carbon nanotube fixed-bed microbial  fuel cell
                 characteristics of methane microbial fuel cell[J]. Transactions of the   continuously fed with hydrothermal liquefied cornstalk biomass[J].
                 Chinese Society of Agricultural Engineering (农业工程学报), 2019,   Bioresource Technology, 2015, 185: 294-301.
                 35(9): 206-213.                               [30]  WUCHTER C, BANNING E, MINCER T J,  et al. Microbial
            [13]  HICKNER M A, HERRING A M, COUGHLIN E  B. Anion   diversity and methanogenic activity of Antrim Shale formation
                 exchange membranes: Current status and moving forward[J]. Journal   waters from recently fractured wells[J]. Frontiers in Microbiology,
                 of Polymer Science Part B: Polymer Physics, 2013, 51(24):   2013, 4: 367.
                 1727-1735.                                    [31]  HASSAN H, JIN B, DONNER E, et al. Microbial community and
            [14]  LOGAN B E, MURANO C, SCOTT K, et al. Electricity generation   bioelectrochemical activities in MFC for  degrading  phenol and
                 from cysteine in a microbial fuel cell[J]. Water Research, 2005,   producing electricity: Microbial consortia could make differences[J].
                 39(5): 942-952.                                   Chemical Engineering Journal, 2018, 332: 647-657.
            [15]  WANG F, ZHANG D L, SHEN X L, et al. Synchronously electricity   [32]  KIM G T, WEBSTER  G, WIMPENNY J W  T,  et al. Bacterial
                 generation and degradation of biogas slurry using microbial fuel   community structure, compartmentalization and activity in a microbial
                 cell[J]. Renewable Energy, 2019, 142: 158-166.    fuel cell[J]. Journal of Applied Microbiology, 2006, 101(3): 698-710.
            [16]  LI Y, HAN Q L, YAO Y, et al. Comparative study of yttria-stabilized   [33]  LI Y F, SHI J, NELSON M C,  et al. Impact of different ratios of
                 zirconia synthesis by co-precipitation and solvothermal methods[J].   feedstock to liquid anaerobic digestion effluent on the performance
                 Journal of the Minerals, 2019, 71(11): 3806-3813.   and microbiome of solid-state anaerobic digesters  digesting corn
            [17]  YING F (应方), XU S S (许珊珊), XU Y B (许燕冰), et al.    stover[J]. Bioresource Technology, 2016, 200: 744-752.
   224   225   226   227   228   229   230   231   232   233   234