Page 32 - 《精细化工》2023年第12期
P. 32

·2574·                            精细化工   FINE CHEMICALS                                 第 40 卷

                 Polymer, 2022, 14(17): 3599-3602.                 polyols[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(32):
            [5]   FALUA K J, POKHAREl A, BABAEI G A,  et al. Valorization of   10664-10677.
                 starch to biobased  materials: A review[J]. Polymer, 2022, 14(11):   [24]  HARMER M A, CONFER D C, HOFFMAN C K, et al. Renewably
                 2215-2258.                                        sourced polytrimethylene ether glycol by superacid  catalyzed
            [6]   CYWAR R M, RORRER N A, HOYT C B, et al. Bio-based polymers   condensation  of 1,3-propanediol[J]. Green Chemistry, 2010, 12(8):
                 with performance-advantaged properties[J]. Nature Reviews Materials,   1410-1416.
                 2021, 7(2): 83-103.                           [25]  DEBUISSY  T, SANGWAN P, POLLET E,  et al. Study on the
            [7]   TAWADE B, SHINGTE R, KUHIRE S,  et al. Bio-based di/   structure-properties relationship of  biodegradable and biobased
                 polyisocyanates for polyurethanes: An overview[J]. Polyurethanes   aliphatic copolyesters based on 1,3-propanediol, 1,4-butanediol,
                 Today, 2017, 13: 41-46.                           succinic and adipic acids[J]. Polymer, 2017, 122: 105-116.
            [8]   ZENG J L, YANG Y, TANG Y B, et al. Synthesis, monomer removal,   [26]  BIEBL H, MENZEL K, ZENG A P, et al. Microbial production of
                 modification, and coating performances of biobased pentamethylene   1,3-propanediol[J]. Applied Microbiology and Biotechnology, 1999,
                 diisocyanate isocyanurate trimers[J]. Industrial & Engineering   52(3): 289-297.
                 Chemistry Research, 2022, 61(6): 2403-2416.   [27]  FREUND A. Uber die bildng und darstellung von trimethylenalkohol
            [9]   CLIVE J, COADYJOHN J, KRAJEWSKITIMOTHY E  B.     aus glycerin[J]. Monatshefte for Chemie, 1881, 2(1): 636-641.
                 Polyacrylated oligomers in ultraviolet curable optical fiber coatings:   [28]  DECKWER W D. Microbial conversion  of glycerol to 1,3-
                 US4608409[P]. 1986-08-26.                         propanediol[J]. FEMS Microbiology Reviews, 1995, 16(2/3):
            [10]  CHARLON M, HEINRICH B, MATTER Y,  et al. Synthesis,   143-149.
                 structure  and properties of fully biobased thermoplastic polyurethanes,   [29]  ZENG A P, BIEBL H. Bulk chemicals from biotechnology: The case
                 obtained from a diisocyanate based on modified  dimer fatty acids,   of 1,3-propanediol  production and the new trends[J]. Advances in
                 and different renewable diols[J]. European Polymer Journal, 2014,   Biochemical Engineering/Biotechnology, 2002, 74: 239-259.
                 61: 197-205.                                  [30]  NAKAMURA C  E, WHITED G M.  Metabolic engineering for the
            [11]  MARWAN R K,  EDGAR R R. Polyisocyanates  and derivatives:   microbial production of 1,3-propanediol[J]. Current Opinion in
                 US3455883A[P]. 1969-07-15.                        Biotechnology, 2003, 14(5): 454-459.
            [12]  CHANG W L (常伟林), XING X  H  (邢校辉), GUI L J (桂李进),     [31]  MARTINS F F, LIBERATO V  D S  S, RIBEIRO  C M S,  et al.
                 et al. Progress in dimeric acid diisocyanate (DDI) synthesis[J].   Low-cost medium for 1,3-propanediol  production from crude
                 Chemical Propellants and Polymer Materials (化学推进剂与高分子  glycerol by  Clostridium butyricum[J]. Biofuels, Bioproducts and
                 材料), 2014, 12(4): 23-26.                          Biorefining, 2020, 14(5): 1125-1134.
            [13]  STOREY R F, WIGGINS J S, PUCKETT A D. Hydrolyzable poly   [32]  DAHIYA S, VENKATA MOHAN S. Selective enrichment of mixed
                 (ester-urethane) networks from L-lysine diisocyanate and D,L-lactide/   consortia towards enhanced 1,3-propanediol  production from
                 ε-caprolactone homo-and copolyester triols[J]. Journal of Polymer   glycerol[J]. Sustainable Energy Technologies and Assessments, 2021,
                 Science Part A: Polymer Chemistry, 1994, 32(12): 2345-2363.   47: 101337.
            [14]  NOWICK J S, POWELL N A, NGUYEN T M, et al. An improved   [33]  KIM T, FLICK R, BRUNZELLE J, et al. Novel aldo-keto reductases
                 method for the synthesis of enantiomerically pure amino acid ester   for the biocatalytic conversion of 3-hydroxybutanal to 1,3-butanediol:
                 isocyanates[J]. The Journal  of Organic Chemistry, 2002, 57(26):   Structural and biochemical studies[J]. Appl Environ Microbiol, 2017,
                 7364-7366.                                        83(7): e03172.
            [15]  WANG M L (王明亮), GU B X (谷保祥). Synthesis of L-lysine ethyl   [34]  XIE S Q, LI Z  X, ZHU G D,  et al. Cleaner production and
                 ester diisocyanate[J]. Fine Chemical Intermediates (精细化工中间  downstream processing of bio-based  2,3-butanediol:  A review[J].
                 体), 2005, 35(4): 56-57.                           Journal of Cleaner Production, 2022, 343: 131033.
            [16]  GÖKHAN Ç, SELIM K S. Biobased polyisocyanates from plant oil   [35]  TINÔCO D, BORSCHIVER S,  COUTINHO P L,  et al.
                 triglycerides: Synthesis, polymerization, and characterization[J].   Technological  development of the bio-based  2,3-butanediol
                 Journal of Applied Polymer Science, 2008, 109(5): 2948-2955.   process[J]. Biofuels, Bioproducts and Biorefining, 2020, 15(2):
            [17]  HOJABRI L, KONG X, NARINE S S. Novel long chain unsaturated   357-376.
                 diisocyanate from fatty acid: Synthesis, characterization, and   [36]  KUNIOKA M, MASUDA T, TACHIBANA Y, et al. Highly selective
                 application in bio-based polyurethane[J]. Journal of Polymer Science   synthesis of biomass-based 1,4-butanediol monomer by alcoholysis
                 Part A: Polymer Chemistry, 2010, 48(15): 3302-3310.   of 1,4-diacetoxybutane derived from furan[J]. Polymer Degradation
            [18]  MORE A S, LEBARBÉ T, MAISONNEUVE L,  et al. Novel fatty   and Stability, 2014, 109: 393-397.
                 acid based di-isocyanates towards the synthesis  of thermoplastic   [37] WANG  X  (王昕),  WANG J (王静), CHEN  K Q  (陈可泉),  et al.
                 polyurethanes[J]. European Polymer Journal, 2013, 49(4): 823-833.   Research  progress  in bioproduction of aliphatic diamines by
            [19]  FRIDRIHSONE A, ROMAGNOLI F, KIRSANOVS V,  et al. Life   synthetic biotechnology[J]. Synthetic Biology Journal (合成生物学),
                 cycle assessment of vegetable oil based polyols for  polyurethane   2020, 1(1): 71-83.
                 production[J]. Journal of Cleaner Production, 2020, 266: 121403.   [38]  HE  Y H (贺营花), MA X  Y (马兴元), DING  B (丁博),  et al.
            [20]  MA  Y F, WANG  R, LI Q G,  et al. Castor oil as a platform for   Preparation and  performance study of bio-based waterborne
                 preparing bio-based chemicals  and polymer  materials[J]. Green   polyurethane with lysine chain expansion[J]. Polyurethane Industry
                 Materials, 2022, 10(3): 99-109.                   (聚氨酯工业), 2021, 36(1): 42-44.
            [21]  JACOPO B, IRENE A, MARIA-BEATRICE C, et al. Optimizing the   [39]  LI X Z (李秀峥), LI L P (李澜鹏), CAO C  H (曹长海),  et al.
                 lignin  based synthesis of  flexible polyurethane foams employing   Research progress of bio-based polyamide  and its monomer[J].
                 reactive liquefying agents[J]. Polymer International, 2015, 64(9):   Engineering Plastics Application (工程塑料应用), 2018, 46(7):
                 1235-1244.                                        138-141, 145.
            [22]  DE HARO J C,  ALLEGRETTI  C,  SMIT A  T,  et al. Biobased   [40]  SON J, SOHN  Y  J, BARITUGO K  A,  et al. Recent advances in
                 polyurethane coatings with high biomass content: Tailored properties   microbial production of diamines, aminocarboxylic acids, and diacids
                 by lignin  selection[J]. ACS Sustainable Chemistry & Engineering,   as potential platform chemicals  and bio-based polyamides
                 2019, 7(13): 11700-11711.                         monomers[J]. Biotechnology Advances, 2023, 62: 108070.
            [23]  SARDON H, MECERREYES D, BASTERRETXEA A, et al. From   [41]  HERMENS J G H, JENSMA A, FERINGA B L. Highly efficient
                 lab to market: Current strategies for the production of biobased   biobased synthesis of acrylic acid[J]. Angewandte Chemie
   27   28   29   30   31   32   33   34   35   36   37