Page 32 - 《精细化工》2023年第12期
P. 32
·2574· 精细化工 FINE CHEMICALS 第 40 卷
Polymer, 2022, 14(17): 3599-3602. polyols[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(32):
[5] FALUA K J, POKHAREl A, BABAEI G A, et al. Valorization of 10664-10677.
starch to biobased materials: A review[J]. Polymer, 2022, 14(11): [24] HARMER M A, CONFER D C, HOFFMAN C K, et al. Renewably
2215-2258. sourced polytrimethylene ether glycol by superacid catalyzed
[6] CYWAR R M, RORRER N A, HOYT C B, et al. Bio-based polymers condensation of 1,3-propanediol[J]. Green Chemistry, 2010, 12(8):
with performance-advantaged properties[J]. Nature Reviews Materials, 1410-1416.
2021, 7(2): 83-103. [25] DEBUISSY T, SANGWAN P, POLLET E, et al. Study on the
[7] TAWADE B, SHINGTE R, KUHIRE S, et al. Bio-based di/ structure-properties relationship of biodegradable and biobased
polyisocyanates for polyurethanes: An overview[J]. Polyurethanes aliphatic copolyesters based on 1,3-propanediol, 1,4-butanediol,
Today, 2017, 13: 41-46. succinic and adipic acids[J]. Polymer, 2017, 122: 105-116.
[8] ZENG J L, YANG Y, TANG Y B, et al. Synthesis, monomer removal, [26] BIEBL H, MENZEL K, ZENG A P, et al. Microbial production of
modification, and coating performances of biobased pentamethylene 1,3-propanediol[J]. Applied Microbiology and Biotechnology, 1999,
diisocyanate isocyanurate trimers[J]. Industrial & Engineering 52(3): 289-297.
Chemistry Research, 2022, 61(6): 2403-2416. [27] FREUND A. Uber die bildng und darstellung von trimethylenalkohol
[9] CLIVE J, COADYJOHN J, KRAJEWSKITIMOTHY E B. aus glycerin[J]. Monatshefte for Chemie, 1881, 2(1): 636-641.
Polyacrylated oligomers in ultraviolet curable optical fiber coatings: [28] DECKWER W D. Microbial conversion of glycerol to 1,3-
US4608409[P]. 1986-08-26. propanediol[J]. FEMS Microbiology Reviews, 1995, 16(2/3):
[10] CHARLON M, HEINRICH B, MATTER Y, et al. Synthesis, 143-149.
structure and properties of fully biobased thermoplastic polyurethanes, [29] ZENG A P, BIEBL H. Bulk chemicals from biotechnology: The case
obtained from a diisocyanate based on modified dimer fatty acids, of 1,3-propanediol production and the new trends[J]. Advances in
and different renewable diols[J]. European Polymer Journal, 2014, Biochemical Engineering/Biotechnology, 2002, 74: 239-259.
61: 197-205. [30] NAKAMURA C E, WHITED G M. Metabolic engineering for the
[11] MARWAN R K, EDGAR R R. Polyisocyanates and derivatives: microbial production of 1,3-propanediol[J]. Current Opinion in
US3455883A[P]. 1969-07-15. Biotechnology, 2003, 14(5): 454-459.
[12] CHANG W L (常伟林), XING X H (邢校辉), GUI L J (桂李进), [31] MARTINS F F, LIBERATO V D S S, RIBEIRO C M S, et al.
et al. Progress in dimeric acid diisocyanate (DDI) synthesis[J]. Low-cost medium for 1,3-propanediol production from crude
Chemical Propellants and Polymer Materials (化学推进剂与高分子 glycerol by Clostridium butyricum[J]. Biofuels, Bioproducts and
材料), 2014, 12(4): 23-26. Biorefining, 2020, 14(5): 1125-1134.
[13] STOREY R F, WIGGINS J S, PUCKETT A D. Hydrolyzable poly [32] DAHIYA S, VENKATA MOHAN S. Selective enrichment of mixed
(ester-urethane) networks from L-lysine diisocyanate and D,L-lactide/ consortia towards enhanced 1,3-propanediol production from
ε-caprolactone homo-and copolyester triols[J]. Journal of Polymer glycerol[J]. Sustainable Energy Technologies and Assessments, 2021,
Science Part A: Polymer Chemistry, 1994, 32(12): 2345-2363. 47: 101337.
[14] NOWICK J S, POWELL N A, NGUYEN T M, et al. An improved [33] KIM T, FLICK R, BRUNZELLE J, et al. Novel aldo-keto reductases
method for the synthesis of enantiomerically pure amino acid ester for the biocatalytic conversion of 3-hydroxybutanal to 1,3-butanediol:
isocyanates[J]. The Journal of Organic Chemistry, 2002, 57(26): Structural and biochemical studies[J]. Appl Environ Microbiol, 2017,
7364-7366. 83(7): e03172.
[15] WANG M L (王明亮), GU B X (谷保祥). Synthesis of L-lysine ethyl [34] XIE S Q, LI Z X, ZHU G D, et al. Cleaner production and
ester diisocyanate[J]. Fine Chemical Intermediates (精细化工中间 downstream processing of bio-based 2,3-butanediol: A review[J].
体), 2005, 35(4): 56-57. Journal of Cleaner Production, 2022, 343: 131033.
[16] GÖKHAN Ç, SELIM K S. Biobased polyisocyanates from plant oil [35] TINÔCO D, BORSCHIVER S, COUTINHO P L, et al.
triglycerides: Synthesis, polymerization, and characterization[J]. Technological development of the bio-based 2,3-butanediol
Journal of Applied Polymer Science, 2008, 109(5): 2948-2955. process[J]. Biofuels, Bioproducts and Biorefining, 2020, 15(2):
[17] HOJABRI L, KONG X, NARINE S S. Novel long chain unsaturated 357-376.
diisocyanate from fatty acid: Synthesis, characterization, and [36] KUNIOKA M, MASUDA T, TACHIBANA Y, et al. Highly selective
application in bio-based polyurethane[J]. Journal of Polymer Science synthesis of biomass-based 1,4-butanediol monomer by alcoholysis
Part A: Polymer Chemistry, 2010, 48(15): 3302-3310. of 1,4-diacetoxybutane derived from furan[J]. Polymer Degradation
[18] MORE A S, LEBARBÉ T, MAISONNEUVE L, et al. Novel fatty and Stability, 2014, 109: 393-397.
acid based di-isocyanates towards the synthesis of thermoplastic [37] WANG X (王昕), WANG J (王静), CHEN K Q (陈可泉), et al.
polyurethanes[J]. European Polymer Journal, 2013, 49(4): 823-833. Research progress in bioproduction of aliphatic diamines by
[19] FRIDRIHSONE A, ROMAGNOLI F, KIRSANOVS V, et al. Life synthetic biotechnology[J]. Synthetic Biology Journal (合成生物学),
cycle assessment of vegetable oil based polyols for polyurethane 2020, 1(1): 71-83.
production[J]. Journal of Cleaner Production, 2020, 266: 121403. [38] HE Y H (贺营花), MA X Y (马兴元), DING B (丁博), et al.
[20] MA Y F, WANG R, LI Q G, et al. Castor oil as a platform for Preparation and performance study of bio-based waterborne
preparing bio-based chemicals and polymer materials[J]. Green polyurethane with lysine chain expansion[J]. Polyurethane Industry
Materials, 2022, 10(3): 99-109. (聚氨酯工业), 2021, 36(1): 42-44.
[21] JACOPO B, IRENE A, MARIA-BEATRICE C, et al. Optimizing the [39] LI X Z (李秀峥), LI L P (李澜鹏), CAO C H (曹长海), et al.
lignin based synthesis of flexible polyurethane foams employing Research progress of bio-based polyamide and its monomer[J].
reactive liquefying agents[J]. Polymer International, 2015, 64(9): Engineering Plastics Application (工程塑料应用), 2018, 46(7):
1235-1244. 138-141, 145.
[22] DE HARO J C, ALLEGRETTI C, SMIT A T, et al. Biobased [40] SON J, SOHN Y J, BARITUGO K A, et al. Recent advances in
polyurethane coatings with high biomass content: Tailored properties microbial production of diamines, aminocarboxylic acids, and diacids
by lignin selection[J]. ACS Sustainable Chemistry & Engineering, as potential platform chemicals and bio-based polyamides
2019, 7(13): 11700-11711. monomers[J]. Biotechnology Advances, 2023, 62: 108070.
[23] SARDON H, MECERREYES D, BASTERRETXEA A, et al. From [41] HERMENS J G H, JENSMA A, FERINGA B L. Highly efficient
lab to market: Current strategies for the production of biobased biobased synthesis of acrylic acid[J]. Angewandte Chemie