Page 87 - 《精细化工》2023年第12期
P. 87
第 12 期 谭春雨,等: 适用于玻璃幕墙的 TA-CNTs/SiO 2 黑色透明超亲水涂层及性能 ·2629·
Guangdong[J]. Science Discovery, 2022, 10(4): 114-121. 220: 1-24.
[2] CHE X C, WU Z H, DONG G B, et al. Properties of all-thin-film [17] BAO S Q (鲍思权), JIANG H (姜宏), ZHAO H F (赵会峰), et al.
glass/ITO/WO 3:H/Ta 2O 5/NiO x/ITO electrochromic devices prepared Preparation of reflective infrared and self-cleaning multifunctional
by magnetron sputtering[J]. Thin Solid Films, 2018, 662: 6-12. coated glass[J]. Bulletin of the Chinese Ceramic Society, 2016,
[3] HAN L, LI H N, YAO F, et al. Transparent heat insulation coatings 35(11): 3628-3632.
with highselective shielding ability designed with novel superstructures [18] CAI A J (蔡安江), YAN X R (闫雪蕊), YE X D (叶向东).
of copper sulfide nanoplates[J]. J Mater Sci, 2019, 54: 302-312. Preparation and characterization of polyurethane-SiO 2 composite
[4] LI H P, LIU Y L, WU C J, et al. Design method of green ecological super-hydrophilic transparent coating with self-cleaning and
building considering light environmental pollution[J]. Ekoloji, 2019, anti-fog[J]. Acta Materiae Compositae Sinica, 2020, 37(1): 191-197.
108: 1301-1306. [19] RATHINAVEL S, PRIYADHARSHINI K, DHANANJAYA P. A
[5] JEONGMIN K, SEOKJEA S, YONGSEONG K. A basic study on review on carbon nanotube: An overview of synthesis, properties,
anti-reflection coating PV technology for reducing reflected sunlight functionalization, characterization, and the application[J]. Materials
on the building skin[J]. Asia-Pacific Journal of Convergent Research Science and Engineering B, 2021, 268: 115095.
Interchange, 2019, 5(2): 23-30. [20] LIU B (刘兵), YANG K (杨凯), WANG Y F (汪岳峰). Study on
[6] NURAJR N, ASMATULU R, COHEN R E, et al. Durable anti-fog visible light absorption characteristics of X-type carbon nanotubes[J].
films from layer-by-layer molecularly blended hydrophilic Optical Instruments (光学仪器), 2014, 36(6): 542-545.
polysaccharides[J]. Langmuir, 2011, 27(2): 782-791. [21] HANAEI H, ASSADIM K, SAIDUR R. Highly efficient
[7] YE L Q, ZHANG S M, WANG Q, et al. Mechanically stable antireflective and self-cleaning coatings that incorporate carbon
single-layer mesoporous silica antireflective coating on solar glass[J]. nanotubes (CNTs) into solar cells: A review[J]. Renewable and
RSC Adv, 2014, 67: 35818-35822. Sustainable Energy Reviews, 2016, 59: 620-635.
[8] GAO Y N (高亚男), LIU J C (刘俊成), DONG B P (董北平). [22] CHEN B, LV X S, GUO F. Integrated CNTs/SiO 2 nano-additives on
Research progress on adhesion mechanism and self-cleaning of dust SBS polymeric superhydrophobic coatings for self-cleaning[J].
on glass surface[J]. Shandong Ceramics (山东陶瓷), 2020, 43(2): Surface Engineering, 2020, 36(6): 601-606.
3-8. [23] YUAN R X, WU S Q, YU P, et al. Superamphiphobic and
[9] XIAN C J (咸才军), XING Y (邢颖). Application of nano functional electroactive nanocomposite toward self-cleaning, antiwear, and
coating technology in building energy conservation[J]. Advanced anticorrosion coatings[J]. ACS Appl Mater Interfaces, 2016, 8:
Materials Industry (新材料产业), 2012, (4): 35-41. 12481-12493.
[10] CHENNA R B, THIJS J H V, YANG Y X, et al. Recovery of cerium [24] HU T T (户婷婷), WEI Q G (韦群桂), YANG D (杨丹), et al. Study
from glass polishing waste: A critical review[J]. Metals, 2018, 8: 801. on properties of tannic acid modified carbon nanotubes/XNBR
[11] AFONSO R G, MARKSSUEL T M, MUJAHID A, et al. Effect of the thermal conductive composites[J]. China Rubber Industry, 2020,
addition and processing of glass polishing waste on the durability of 67(4): 258-262.
geopolymeric mortars[J]. Case Studies in Construction Materials, [25] XU S H (徐绍红), CHEN Y Y (陈月钰), MA G Y (马国扬), et al.
2021, 15: e00662. Hydrophilic modification of multi walled carbon nanotubes[J]. Journal
[12] SIRENA L, BRUCE A R, ABIGAIL W A, et al. The influence of of Xinxiang University (新乡学院学报), 2017, 34(12): 31-34.
artificial light at night and polarized light on bird-building [26] WANG L Y (王凌云), TAN K (谭侃), LUO J (罗静). Preparation of
collisions[J]. Biological Conservation, 2020, 241: 108358. photosensitive carbon nanotubes modified by tannic acid and
[13] LI X T (李雪婷), LIU B Y (刘步云), JIN J (金杰). The harm and preparation of UV cured AESO composite films[J]. Imaging Science
prevention of light pollution of glass curtain wall[J]. Cleaning World and Photochemistry (影像科学与光化学), 2019, 37(3): 175-184.
(清洗世界), 2022, 38(3): 92-94. [27] XU L J (许里杰), LU Z Z (鲁浈浈), ZHOU J T (周建庭), et al.
[14] SU F R (苏峰荣). On-line light blue low reflection sunlight control Preparation and properties of transparent superhydrophobic
coating glass preparation process[J]. The World of Building Materials SiO 2/Silicone sealant composite coatings[J]. Fine Chemicals (精细化
(建材世界), 2022, 43(6): 94-96. 工), 2019, 36(7): 1334-1339.
[15] KONG J (孔晶). YUAN J M (袁菊懋), YU M Y (余明远), et al. [28] WENZEL R N. Surface roughness and contact angle[J]. Phys Chem,
Preparation and properties of antireflection coating on sapphire 1949, 53: 1466-1467.
glass[J]. Electroplating & Finishing | Electroplat Finish, 2021, 40(1): [29] THOMPSON C S, FLEMING R A, ZOU M. Transparent
30-34. self-cleaning and antifongging silica nanoparticle films[J]. Solar
[16] ZAMBRANO D F, VILLARROEL R, ESPINOZA-GONZ A, et al. Energy Materials & Solar Cells, 2013, 115: 108-113.
Mechanical and microstructural properties of broadband anti-reflective [30] ZHENG S, LI C, FU Q. Development of stable super-hydrophobic
TiO 2/SiO 2 coatings for photovoltaic applications fabricated by coatings on aluminum surface for corrosion-resistant, self-cleaning,
magnetron sputtering[J]. Solar Energy Materials & Solar Cells, 2021, and anti-icing applications[J]. Materials & Design, 2016, 93: 261-270.
(上接第 2586 页) nanoscale zero valent iron for tetracycline removal from aqueous
solutions: proposed pathway[J]. Environmental Engineering Science,
[56] XIA H (夏虹), PENG M M (彭茂民), LIU L (刘丽). Preparation of 2019, 36(3): 1-10.
magnetic chitosan/ZnS: Fe composite nanoparticles and its photocatalytic [59] DIVYA C H, JAYA D, NALINI S S. Novel chitosan/PVA/zerovalent
degradation of malachite green[J]. Luminescence (发光学报), 2019, iron biopolymeric nanofibers with enhanced arsenic removal
40(8): 993-1000. applications[J]. Environmental Science and Pollution Research
0
[57] SUN L, ZHANG L D, LIANG C H. Chitosan modified Fe nanowires International, 2014, 21(15): 9430-9442.
in porous anodic alumina and their application for the removal of [60] LIU T Y, YANG X, WANG Z L, et al. Enhanced chitosan beads-
0
hexavalent chromium from water[J]. Journal of Materials Chemistry, supported Fe -nanoparticles for removal of heavy metals from
2011, 21(16): 5877-5800. electroplating wastewater in permeable reactive barriers[J]. Water
[58] WANG X Y, ZHANG B B, MA J, et al. Chitosan modifying Research, 2013, 47(17): 6691-6700.