Page 19 - 《精细化工》2023年第3期
P. 19

第 3 期                         唐亚丽,等:  酶型生物改性抗菌材料的研究进展                                    ·475·


            在新型冠状病毒肺炎疫情的影响下,开发新型抗菌                             [18]  IMRAN M, SANJEEV C, GHADI S C. Chapter 2-Genome sequence
            材料具有重要意义。新型酶型生物改性材料在食品                                 analysis  for  bioprospecting  of  marine  bacterial
                                                                   polysaccharide-degrading enzymes[M].  Amsterdam: Advances in
            工业、医疗卫生、生物工程、制药等方面将会有广                                 Biological Science Research, 2019.
            泛的应用。                                              [19]  SHOW P L, OOI C W, LEE X J, et al. Batch and dynamic adsorption
                                                                   of lysozyme from chicken egg white on dye-affinity nanofiber
            参考文献:                                                  membranes modified by ethylene diamine and chitosan[J].
                                                                   International Journal of Biological Macromolecules, 2020, 162:
            [1]   YE L, CAO Z M, LIU X M, et al. Noble metal-based nanomaterials   1711-1724.
                 as antibacterial agents[J]. Journal of Alloys and Compounds, 2022,   [20]  HAMDANI A M, WANI I A, BHAT N A, et al. Effect of guar gum
                 904: 164091.                                      conjugation on functional, antioxidant and antimicrobial activity of
            [2]  RAOWSKI Ł G,  ŁEPEK K, STASIŁOJĆ M,  et al. Bacteriophage-   egg white lysozyme[J]. Food Chemistry, 2018, 240: 1201-1209.
                 encoded enzymes destroying bacterial cell membranes and walls, and   [21]  HAO X, CHEN S, ZHU H, et al. The synergy of graphene oxide and
                 their potential use  as antimicrobial agents[J]. Microbiological   polydopamine assisted immobilization of lysozyme to improve
                 Research, 2021, 248: 126746.                      antibacterial properties[J]. Chemistry Select, 2017, 2(6): 2174-2182.
            [3]   TANG L, TONG  D Q, ZHANG Y  L,  et al. A simple judgment   [22] LEŚNIEROWSKI G, YANG T Y. Lysozyme and its modified forms:
                 method for joint action of antibacterial  agents on bacterial   A critical appraisal of selected properties and potential[J]. Trends in
                 resistance[J]. MethodsX, 2022, 9: 101700.         Food Science & Technology, 2021, 107: 333-342.
            [4]   DOYLE A A, STEPHENS J C. A review of cinnamaldehyde and its   [23]  WU T T,  JIANG Q  Q, WU  D,  et al.  What is new in lysozyme
                 derivatives as antibacterial agents[J]. Fitoterapia, 2019, 139: 104405.     research and its application in food industry: A review[J]. Food
            [5]   ZHANG N, MA S. Recent development of membrane-active   Chemistry, 2019, 274: 698-709.
                 molecules as antibacterial agents[J]. European Journal of Medicinal   [24]  CHENG D Y, JIANG C  C, XU J  C,  et al. Characteristics and
                 Chemistry, 2019, 184: 111743.                     applications of alginate lyases: A review[J]. International Journal of
            [6]   YAN Y  H, LI Y Z, ZHANG  Z W, et al. Advances of peptides for   Biological Macromolecules, 2020, 164: 1304-1320.
                 antibacterial applications[J]. Colloids and Surfaces B: Biointerfaces,   [25]  DONG F, XU F, CHEN X L, et al. Alginate lyase aly36B is a new
                 2021, 202: 111682.                                bacterial member of the polysaccharide lyase family 36 and catalyzes
            [7]   THALLINGER  B, PRASETYO E N, NYANHONGO G S,  et al.   by a novel mechanism with lysine as both the catalytic base and
                 Antimicrobial enzymes: An emerging strategy to fight microbes and   catalytic acid[J]. Journal of Molecular Biology, 2019, 431(24):
                 microbial biofilms[J]. Biotechnology Journal, 2013, 8(1): 97-109.     4897-4909.
            [8]  BURCHACKA  E, PIĘTA P,  ŁUPICKA-SŁOWIK A,  et al. Recent   [26]  DABOOR S M, ROHDE J R, CHENG Z Y, et al. Disruption of the
                 advances in fungal serine protease inhibitors[J]. Biomedicine &   extracellular polymeric network of pseudomonas aeruginosa biofilms
                 Pharmacotherapy, 2022, 146: 112523.               by alginate lyase  enhances pathogen eradication by antibiotics[J].
            [9]   MAHMOUD A, KOTB E, ALQOSAIBI A I, et al. In vitro and in   Journal of Cystic Fibrosis, 2021, 20(2): 264-270.
                 silico characterization  of alkaline serine protease from  Bacillus   [27]  HU F, CAO S S, LI Q,  et al. Construction and biochemical
                 subtilis D9  recovered from Saudi Arabia[J]. Heliyon, 2021, 7(10):   characterization of a novel hybrid alginate lyase with high activity by
                 e08148.                                           module recombination to prepare  alginate oligosaccharides[J].
            [10]  LU H R (陆海荣). Study on  the mechanism of efficient lysis of   International Journal of Biological Macromolecules, 2021, 166:
                 bacterial cell wall by lysosta phylococcal  enzyme[D]. Shanghai:   1272-1279.
                 Fudan University (复旦大学), 2013.                [28]  HILL K J, KASZUBA M, CREETH J E, et al. Reactive liposomes
            [11]  ZHANG X  Y (张晓燕),  GUO L D  (国立东),  LIU X Y  (刘晓艳).   encapsulating a glucose oxidase-peroxidase system with antibacterial
                 Research progress of neutral protease from  Bacillus subtilis[J].   activity[J]. Biochimica Et  Biophysica Acta (BBA)-Biomembranes,
                 Chinese Brewing (中国酿造), 2018, 37(4): 12-15.       1997, 1326(1): 37-46.
            [12]  ZHANG R Z (张荣宗), JIANG D W (江丁文), CHEN J X (陈锦香).   [29]  MANO N. Engineering glucose oxidase for bioelectrochemical
                 Analysis of  protease structure and expression vector of  Bacillus   applications[J]. Bioelectrochemistry, 2019, 128: 218-240.
                 subtilis[J]. Agricultural Technology and Equipment (农业技术与装  [30]  LI X J, XIE X F, XING F G, et al. Glucose oxidase as a control agent
                 备), 2021, (7): 60-61, 64.                         against the fungal pathogen botrytis cinerea in postharvest
            [13]  WEI Z H, SHAN  C J, ZHANG  L X,  et al. A novel subtilin-like   strawberry[J]. Food Control, 2019, 105: 277-284.
                 lantibiotics subtilin JS-4 produced by Bacillus subtilis JS-4, and its   [31]  GE L, ZHAO Y S, MO T, et al. Immobilization of glucose oxidase in
                 antibacterial mechanism against listeria  monocytogenes[J]. LWT,   electrospun nanofibrous membranes for food preservation[J]. Food
                 2021, 142: 110993.                                Control, 2012, 26(1): 188-193.
            [14]  XIANG  Y Z, LI X Y, ZHENG  H L,  et al. Purification and   [32]  NYANHONGO G S,  THALLINGER B, GUEBITZ  G M,  et al.
                 antibacterial properties of a novel bacteriocin against  Escherichia   Cellobiose dehydrogenase-based biomedical applications[J]. Process
                 coli from Bacillus subtilis isolated from blueberry ferments[J]. LWT,   Biochemistry, 2017, 59: 37-45.
                 2021, 146: 111456.                            [33]  THALLINGER B, ARGIROVA M, LESSEVA M, et al. Preventing
            [15]  LU H, XIONG W B, LI Z, et al. Activity of the lyases lysSSE1 and   microbial colonisation  of catheters: Antimicrobial and antibiofilm
                 HolSSE1 against common pathogenic bacteria  and their   activities of cellobiose dehydrogenase[J]. International Journal of
                 antimicrobial efficacy in biofilms[J].  Bioorganic Chemistry, 2021,   Antimicrobial Agents, 2014, 44(5): 402-408.
                 116: 105322.                                  [34]  SULEJ J, OSIŃSKA-JAROSZUK M, JASZEK  M,  et al.
            [16]  WANG  Z H, ZHAO X.  The  application and research progress of   Antimicrobial and  antioxidative potential of free and immobilised
                 bacteriophages in food safety[J]. Journal of Applied Microbiology,   cellobiose dehydrogenase isolated from  wood degrading fungi[J].
                 2022, 133(4): 2137-2147.                          Fungal Biology, 2019, 123(12): 875-886.
            [17]  OBESO J M, MARTÍNEZ B, RODRÍGUEZ A, et al. Lytic activity of   [35]  BUYS E M,  SEIFU E. Enzymes indigenous to milk:
                 the recombinant staphylococcal bacteriophage ΦH5 endolysin active   Lactoperoxidase[M]. 3rd edition. Amsterdam: Encyclopedia of Dairy
                 against  Staphylococcus aureus in milk[J]. International Journal of   Sciences, 2022.
                 Food Microbiology, 2008, 128(2): 212-218.     [36]  ZHANG W L, RHIM J W. Functional edible films/coatings
   14   15   16   17   18   19   20   21   22   23   24