Page 20 - 《精细化工》2023年第3期
P. 20

·476·                             精细化工   FINE CHEMICALS                                 第 40 卷

                 integrated with lactoperoxidase and lysozyme and their application in   [55]  TRACHE D, KHIMECHE K, ABDERRAHMANE  M,  et al.
                 food preservation[J]. Food Control, 2022, 133(B): 108670.     Physicochemical properties of microcrystalline nitrocellulose from
            [37]  MAZRI C, SÁNCHEZ L, RAMOS S J, et al. Effect of high-pressure   alfa grass fibres and its thermal stability[J]. Journal of  Thermal
                 treatment on denaturation of bovine  β-lactoglobulin and   Analysis and Calorimetry, 2016, 124: 1485-1496.
                 α-lactalbumin[J]. Eur Food Res Technol, 2012, 234: 813-819.     [56]  TANG Y,  TANG S, ZHANG  T.  Homogeneous preparation of
            [38]  MOLAYI R, EHASANI A, YOUSEFI M. The antibacterial effect of   aerocellulose grafted acrylamide  and its CO 2 adsorption  properties
                 whey protein-alginate coating incorporated with the lactoperoxidase   [J]. Cellulose, 2020, 27(6): 3263-3275.
                 system on chicken thigh meat[J]. Food Sci Nutr, 2018, 6: 878-883.     [57]  GONG  C, NI J P,  TIAN C,  et al. Research in porous structure of
            [39]  BEKHIT M,  GORSKI  W. Biosensing with myeloperoxidase:   cellulose aerogel made from cellulose nanofibrils[J]. International
                                               −
                 Mechanism,  activity, and determination  of  SCN [J]. Sensors and   Journal of Biological Macromolecules, 2021, 172: 573-579.
                 Actuators B: Chemical, 2021, 331: 129469.     [58]  TIAN W G, GAO X X, ZHANG J M, et al. Cellulose nanosphere:
            [40]  JOKUMSEN K  V, HUHLE V  H, DAVIES M  J,  et al.   Preparation and  applications  of the novel nanocellulose[J].
                 Characterisation of protein iodination and chlorination generated by   Carbohydrate Polymers, 2022, 277: 118863.
                 myeloperoxidase[J]. Free Radical Biology and Medicine, 2021, 177:   [59]  ZHANG T T, ZHOU P H, ZHAN Y F, et al. Pectin/lysozyme bilayers
                 S121.                                             layer-by-layer deposited cellulose nanofibrous mats for antibacterial
            [41]  WANG Y M, WANG F, ZHANG H,  et al. Antibacterial material   application[J]. Carbohydrate Polymers, 2015, 117: 687-693.
                 surfaces/interfaces for biomedical applications[J]. Applied Materials   [60]  ZHOU B, LI Y, DENG  H B,  et al.  Antibacterial multilayer films
                 Today, 2021, 25: 101192.                          fabricated by layer-by-layer immobilizing lysozyme  and gold
            [42]  AGNIESZKA  K  M, HENK J B, ANDREAS H,  et al. Pluronic-   nanoparticles on nanofibers[J]. Colloids and Surfaces B: Biointerfaces,
                 lysozyme conjugates as anti-adhesive and antibacterial bifunctional   2014, 116: 432-438.
                 polymers for surface  coating[J]. Biomaterials, 2011, 32(26): 6333-   [61]  HU X X, LIU Y F, ZHU D D, et al. Preparation and characterization
                 6341.                                             of edible carboxymethyl cellulose films containing natural antibacterial
            [43]  TIAN B R, LIU Y M. Chitosan-based biomaterials: From discovery   agents: Lysozyme[J]. Food Chemistry, 2022, 385: 132708.
                 to food application[J]. Polym Adv Technol, 2020, 31: 2408-2421.     [62]  PFLUG E E, BUCHMANN N, SIEGWOLF R T W, et al. Resilient
            [44]  NUNES  C, COIMBRA M A, FERREIRA P,  et al. Tailoring   leaf physiological response of European beech (Fagus sylvatica L. )
                 functional chitosan-based composites  for food applications[J]. The   to summer drought and drought release[J]. Frontiers in Plant Science,
                 Chemical Record, 2018, 18(7/8): 1138-1149.        2018, 9: 187.
            [45]  ZHANG H  C, FENG M M, CHEN S S,  et al. Incorporation  of   [63]  LIN D R, MA Y, QIN W, et al. The structure, properties and potential
                 lysozyme into cellulose nanocrystals stabilized  β-chitosan   probiotic properties of starch-pectin blend: A review[J]. Food
                 nanoparticles with enhanced antibacterial activity[J]. Carbohydrate   Hydrocolloids, 2022, 129: 107644.
                 Polymers, 2020, 236: 115974.                  [64]  MOHAMED S A, ELARABY N M, ABDEL-ATY A  M,  et al.
            [46]  YU W Z, ZHANG Y  Z, LIU X M,  et al. Synergistic antibacterial   Improvement of enzymatic properties and decolorization of azo dye:
                 activity of multi components in lysozyme/chitosan/silver/hydroxyapatite   Immobilization of horseradish peroxidase on cationic maize starch[J].
                 hybrid coating[J]. Materials & Design, 2018, 139: 351-362.     Biocatalysis and Agricultural Biotechnology, 2021, 38: 102208.
            [47]  WU T T, HUANG J Q, JIANG Y Y, et al. Formation of hydrogels   [65]  SARAK S, BOONSUK P, KANTACHOTE D,  et al. Film coating
                 based on chitosan/alginate for the delivery of lysozyme and their   based on native starch and cationic starch blend improved
                 antibacterial activity[J]. Food Chemistry, 2018, 240: 361-369.     postharvest quality of mangoes[J]. International Journal of Biological
            [48]  LI X, TU H, HUABG M T, et al. Incorporation of lysozyme-rectorite   Macromolecules, 2022, 209(A): 125-131.
                 composites into chitosan films for antibacterial properties   [66]  EL-NAGGAR M  E, ABDEL-ATY  A M, WASSEL  A R,  et al.
                 enhancement[J]. International Journal of Biological Macromolecules,   Immobilization of horseradish peroxidase on cationic  microporous
                 2017, 102: 789-795.                               starch:  Physico-bio-chemical characterization and removal of
            [49]  YANG Y M,  WANG J  W,  TAN R  X. Immobilization  of glucose   phenolic compounds[J]. International Journal of Biological
                 oxidase on chitosan-SiO 2 gel[J]. Enzyme and Microbial Technology,   Macromolecules, 2021, 181: 734-742.
                 2004, 34(2): 126-131.                         [67]  CHEN X C, ZHOU Q Z, LIU F M, et al. Performance and kinetic of
            [50]  TAN  Y  L, MA S, LEONHARD  M,  et al. Co-immobilization  of   pesticide residues removal by microporous starch immobilized
                 cellobiose dehydrogenase and deoxyribonuclease  Ⅰ  on chitosan   laccase in a combined adsorption and biotransformation process[J].
                 nanoparticles against fungal/bacterial polymicrobial biofilms   Environmental Technology & Innovation, 2021, 21: 101235.
                 targeting both  biofilm  matrix and microorganisms[J]. Materials   [68]  JIANG Z D, ZHANG X W, WU  L Y,  et al. Exolytic products of
                 Science and Engineering: C, 2020, 108: 110499.     alginate by the immobilized alginate  lyase confer antioxidant and
            [51]  MELO M N, PEREIRA F M, ROCHA M A, et al. Immobilization   antiapoptotic bioactivities in human umbilical vein endothelial
                 and characterization of  horseradish  peroxidase into chitosan and   cells[J]. Carbohydrate Polymers, 2021, 251: 116976.
                 chitosan/PEG nanoparticles: A comparative study[J]. Process   [69]  RAI S K, KAUR  H, SINGH  A,  et al. Production of D-tagatose in
                 Biochemistry, 2020, 98: 160-171.                  packed bed reactor containing an immobilized L-arabinose isomerase
            [52]  AMBAYE T  G, VACCARI M, PRASAD S,  et al. Preparation and   on alginate support[J]. Biocatalysis and Agricultural Biotechnology,
                 applications of chitosan and cellulose composite materials[J]. Journal   2021, 38: 102227.
                 of Environmental Management, 2022, 301: 113850.     [70]  URREA D A M,  GIMENEZ  A V F, RODRIGUEZ Y R,  et al.
            [53]  KASSAB Z, SYAFRI E, TAMRAOUI Y,  et al. Characteristics  of   Immobilization  of horseradish peroxidase in Ca-alginate beads:
                 sulfated and carboxylated cellulose  nanocrystals extracted from   Evaluation of the enzyme leakage on the overall removal of an
                 Juncus plant stems[J]. International Journal of Biological   azo-dye and  mathematical  modeling[J]. Process Safety  and
                 Macromolecules, 2020, 154: 1419-1425.             Environmental Protection, 2021, 156: 134-143.
            [54]  GOLUBEV A E, KUVSHINOVA S A, BURMISTROV V A, et al.   [71]  ZHANG Z, ZHOU X, WANG D, et al. Lysozyme-based composite
                 Modern advances in the preparation and modification  of cellulose   membranes and their potential application for active packaging[J].
                 nitrates[J]. Russian Journal of General Chemistry, 2018, 88(2):   Food Bioscience, 2021, 43: 101078.
                 368-381.                                      [72]  XIA  Y,  LI J, JIANG L,  et al.  A new strategy for the controlled
   15   16   17   18   19   20   21   22   23   24   25