Page 193 - 《精细化工》2023年第3期
P. 193

第 3 期                  梁勇清,等:  焙烧条件对 Na 3 V 2 (PO 4 ) 3 /C 的制备及储锌性能影响                    ·649·


            间和煅烧温度对样品形态结构和储锌电化学性能                                  Applied Materials & Interfaces, 2018, 10(26): 22059-22066.
                                                               [15]  OBERHOLZER P, TERVOORT E, BOUZID A, et al. Oxide versus
            的影响。XRD、SEM 和 BET 测试表明,不同煅烧                            nonoxide cathode materials for aqueous Zn batteries: An insight into
                                                                   the charge storage mechanism  and consequences thereof[J]. ACS
            温度制备的样品均为纯相 NVP/C,且材料都呈现类                              Applied Materials & Interfaces, 2018, 11(1): 674-682.
            球状形貌。煅烧温度从 700  ℃升高至 900  ℃时,                      [16]  MENG L  Y, LIN D,  WANG  J,  et al. Electrochemically activated
                                                                   nickel-carbon composite as ultrastable cathodes for  rechargeable
            材料晶粒尺寸逐渐增大,出现团聚现象。当煅烧温                                 nickel-zinc batteries[J]. ACS Applied Materials & Interfaces, 2019,
                                                                   11(16): 14854-14861.
            度为 700  ℃、煅烧时间为 8 h 时制得的 NVP/C-                    [17]  LIU S, LEI T, SONG Q Q,  et al. High energy, long cycle, and
            700-8 形貌更为规整,分散性更好,颗粒尺寸较为                              superior low temperature performance aqueous Na-Zn hybrid batteries
                                                                   enabled by a low-cost  and protective interphase film-forming
            均匀,结构稳定性高。NVP/C-700-8 具有较小的阻                           electrolyte[J]. ACS Applied Materials & Interfaces,  2022, 14(9):
                                                                   11425-11434.
            抗和更强的离子扩散能力,展现出较好的电化学性                             [18]  XU C J, LI B H, DU H D, et al. Energetic zinc ion chemistry: The
            能。在 0.1 A/g 电流密度下表现较高的放电比容量                            rechargeable zinc ion battery[J]. Angewandte Chemie, 2012, 51(4):
                                                                   933-935.
            (122.4 mA·h/g)。在 1.0 A/g 下经过 200 圈循环后,             [19]  MATHEW V, SAMBANDAM B, KIM S, et al. Manganese and
                                                                   vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries:
            放电比容量仍可达到 103.9 mA·h/g。结果表明,适                          A focused view on performance,  mechanism, and developments[J].
            宜的煅烧温度和煅烧时间既有利于材料晶体的充                                  ACS Energy Letters, 2020, 5(7): 2376-2400.
                                                               [20]  WANG  L P, CAO Z Y, ZHUANG  P  Y,  et al. Electrochemical
            分发育,也可避免颗粒因团聚而产生较大尺寸的二                                 injection oxygen vacancies in layered Ca 2Mn 3O 8 for boosting zinc-
                                                                   ion storage[J]. ACS Applied Materials & Interfaces,  2021, 13(11):
            次颗粒。                                                   13338-13346.
                                                               [21]  HE P, YAN M Y, ZHANG G B, et al. Layered VS 2 nanosheet-based
            参考文献:                                                  aqueous Zn ion battery cathode[J]. Advanced Energy Materials,
                                                                   2017, 7(11): 1601920.
            [1]   LI Q (李芹), SHENG L C (盛利成), DONG L M (董丽敏), et al.   [22]  WANG X Y,  MA  L W, SUN J  C.  Vanadium pentoxide nanosheets
                 Preparation and electrochemical properties of ZnCo 2O 4 and ZnCo 2O 4/rGO   in-situ spaced with acetylene black as cathodes for high-performance
                 composites[J]. Journal of Materials Engineering  (材料工程), 2019,   zinc-ion batteries[J].  ACS Applied Materials & Interfaces,  2019,
                 47(4): 71-76.                                     11(44): 41297-41303.
            [2]   WU Y F (吴怡芳), CHONG S K (崇少坤), LIU Y N (柳永宁), et al.   [23]  HUANG S, HE S, QIN H, et al. Oxygen defect hydrated vanadium
                 Research progress on carbon nano-materials to construct Li-ion and   dioxide/graphene as a superior cathode for aqueous Zn batteries[J].
                 Li-S batteries  of high performance[J]. Journal  of Materials   ACS Applied Materials & Interfaces, 2021, 13(37): 44379-44388.
                 Engineering (材料工程), 2020, 48(4): 25-35.       [24]  LU K, SONG B, ZHANG  Y X,  et al. Encapsulation of zinc
            [3]   LING R, CAO B Q, QI W T, et al. Three-dimensional Na 3V 2(PO 4) 3@   hexacyanoferrate nanocubes with manganese oxide nanosheets for
                 carbon/N-doped graphene aerogel: A versatile cathode  and anode   high-performance rechargeable zinc-ion batteries[J]. Journal of Materials
                 host material with high-rate and ultralong-life for sodium storage[J].   Chemistry A, 2017, 5(45): 23628-23633.
                                                                                                           2+
                 Journal of Alloys and Compounds, 2021, 869: 159307.   [25]  WANG F, HU  E  Y, SUN  W,  et al. A  rechargeable aqueous  Zn -
            [4]   HUANG  X B, YI  X, YANG Q,  et al. Outstanding electrochemical   battery with high power density and a long cycle-life[J]. Energy &
                 performance of N/S co-doped carbon/Na 3V 2(PO 4) 3 hybrid as the   Environmental Science, 2018, 11(11): 3168-3175.
                 cathode of a sodium-ion battery[J]. Ceramics International,  2020,   [26]  LI G L, YANG Z, JIANG Y, et al. Hybrid aqueous battery based on
                 46(18): 28084-28090.                              Na 3V 2(PO 4) 3/C cathode and zinc anode for  potential large-scale
            [5]   ZHANG X H, CHEN H L, LIU W L, et al. A long-cycling aqueous   energy storage[J]. Journal of Power Sources, 2016, 308: 52-57.
                 zinc-ion pouch cell: NASICON-type material and surface modification[J].   [27]  LI W, WANG K L, CHENG S J, et al. A long-life aqueous Zn-ion
                 Chemistry-An Asian Journal, 2020, 15(9): 1430-1435.   battery based on Na 3V 2(PO 4) 2F 3  cathode[J]. Energy Storage
            [6]   MA J (马婧), WANG F P (王芳平), ZHOU K L (周凯玲), et al.   Materials, 2018, 15: 14-21.
                 Preparation of sandwich-type biochar electrode materials and   [28]  GUPTA T, KIM A, PHADKE S, et al. Improving the cycle life of a
                 performance of supercapacitor[J]. Fine Chemicals (精细化工), 2021,   high-rate, high-potential aqueous dual-ion battery using hyper-dendritic
                 38(2): 374-379.                                   zinc and copper  hexacyanoferrate[J]. Journal of Power Sources,
            [7]   ZHANG P P (张盼盼), HUANG H (黄惠), HE Y P (何亚鹏), et al.   2016, 305: 22-29.
                 Recent development of Li-rich manganese cathode material for Li-ion   [29]  CHAE M,  HEO J, KWAK H, et  al. Organic electrolyte-based
                 batteries[J]. Journal of Materials Engineering (材料工程),  2021,   rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate
                 49(3): 48-58.                                     as a cathode material[J]. Journal of  Power Sources,  2017, 337:
            [8]   NI S B, LIU J L, CHAO D  L,  et al.  Vanadate-based materials for   204-211.
                 Li-ion  batteries: The search for anodes for practical  applications[J].   [30]  HOU Z G,  ZHANG X Q,  LI  X  N,  et al.  Surfactant widens the
                 Advanced Energy Materials, 2019, 9(14): 1803324.   electrochemical  window of an aqueous electrolyte for better
            [9]   ZHENG Q,  YI H M, LI X F,  et al. Progress and prospect for   rechargeable aqueous sodium/zinc battery[J]. Journal of  Materials
                 NASICON-type Na 3V 2(PO 4) 3 for electrochemical energy storage[J].   Chemistry A, 2017, 5(2): 730-738.
                 Journal of Energy Chemistry, 2018, 27(6): 1597-1617.   [31]  ZHANG  H, HASA I, BUCHHOLZ  D,  et al. Effects of nitrogen
            [10]  ZHOU J (周佳),  LIU J (刘杰), CHENG S  Y (程思远),  et al.   doping on the structure and performance of carbon coated Na 3V 2(PO 4) 3
                 Preparation of Al-doped NiCo 2S 4  electrode  material and its   cathodes for sodium-ion batteries[J]. Carbon, 2017, 124: 334-341.
                 electrochemical properties[J]. Fine Chemicals (精细化工),  2022,   [32]  ZHANG X X, MA J, HU P, et al. An insight into failure mechanism
                 39(5): 972-978.                                   of  NASICON-structured  Na 3V 2(PO 4) 3  in  hybrid  aqueous
            [11]  JIANG Y, WU Y, CHEN Y X, et al. Design nitrogen (N) and sulfur   rechargeable battery[J]. Journal of Energy Chemistry, 2019, 32: 1-7.
                 (S)  co-doped  3D  graphene  network  architectures  for  [33]  LI L F (李玲芳), YANG J X (杨家兴), WU C (吴超). Research
                 high-performance sodium storage[J]. Small, 2018, 14: 1703471.   progress  of vanadium phosphate sodium for cathode material of
            [12]  ZHANG T (张涛), ZHOU K F (周坤蕃), YANG S N (阳思念), et al.   Na-ion batteries[J]. Journal of Synthetic Crystals (人工晶体学报),
                 Application of Al intercalated (NH 4) 2V 10O 25•8H 2O cathode material   2017, 46(11): 2238-2243.
                 in aqueous zinc ion battery[J]. Fine Chemicals (精细化工),  2022,   [34]  LIM S J, HAN D W, NAM D H, et al. Structural enhancement of
                 39(2): 282-287.                                   Na 3V 2(PO 4) 3/C composite cathode materials by pillar ion doping for
            [13]  ZHOU S H (周世昊), ZHAO C X (赵才贤), ZHANG T (张涛), et al.   high power and  long cycle life sodium-ion batteries[J]. Journal  of
                 Preparation of Zn Mn 2O 4/Mn 2O 3/CNT composite cathode  material   Materials Chemistry A, 2014, 2(46): 19623-19632.
                 and its application in aqueous zinc-ion batteries[J]. Fine Chemicals   [35]  DUAN W C, ZHU Z Q, LI H,  et al. Na 3V 2(PO 4) 3@C core-shell
                 (精细化工), 2021, 38(4): 765-773.                     nanocomposites for rechargeable sodium-ion batteries[J]. Journal of
            [14]  LI W, WANG K L,  ZHOU M,  et al. Advanced  low-cost,   Materials Chemistry A, 2014, 2(23): 8668-8675.
                 high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled
                 by  a  dendrite-free zinc anode and concentrated  electrolyte[J]. ACS        (下转第 672 页)
   188   189   190   191   192   193   194   195   196   197   198