Page 193 - 《精细化工》2023年第3期
P. 193
第 3 期 梁勇清,等: 焙烧条件对 Na 3 V 2 (PO 4 ) 3 /C 的制备及储锌性能影响 ·649·
间和煅烧温度对样品形态结构和储锌电化学性能 Applied Materials & Interfaces, 2018, 10(26): 22059-22066.
[15] OBERHOLZER P, TERVOORT E, BOUZID A, et al. Oxide versus
的影响。XRD、SEM 和 BET 测试表明,不同煅烧 nonoxide cathode materials for aqueous Zn batteries: An insight into
the charge storage mechanism and consequences thereof[J]. ACS
温度制备的样品均为纯相 NVP/C,且材料都呈现类 Applied Materials & Interfaces, 2018, 11(1): 674-682.
球状形貌。煅烧温度从 700 ℃升高至 900 ℃时, [16] MENG L Y, LIN D, WANG J, et al. Electrochemically activated
nickel-carbon composite as ultrastable cathodes for rechargeable
材料晶粒尺寸逐渐增大,出现团聚现象。当煅烧温 nickel-zinc batteries[J]. ACS Applied Materials & Interfaces, 2019,
11(16): 14854-14861.
度为 700 ℃、煅烧时间为 8 h 时制得的 NVP/C- [17] LIU S, LEI T, SONG Q Q, et al. High energy, long cycle, and
700-8 形貌更为规整,分散性更好,颗粒尺寸较为 superior low temperature performance aqueous Na-Zn hybrid batteries
enabled by a low-cost and protective interphase film-forming
均匀,结构稳定性高。NVP/C-700-8 具有较小的阻 electrolyte[J]. ACS Applied Materials & Interfaces, 2022, 14(9):
11425-11434.
抗和更强的离子扩散能力,展现出较好的电化学性 [18] XU C J, LI B H, DU H D, et al. Energetic zinc ion chemistry: The
能。在 0.1 A/g 电流密度下表现较高的放电比容量 rechargeable zinc ion battery[J]. Angewandte Chemie, 2012, 51(4):
933-935.
(122.4 mA·h/g)。在 1.0 A/g 下经过 200 圈循环后, [19] MATHEW V, SAMBANDAM B, KIM S, et al. Manganese and
vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries:
放电比容量仍可达到 103.9 mA·h/g。结果表明,适 A focused view on performance, mechanism, and developments[J].
宜的煅烧温度和煅烧时间既有利于材料晶体的充 ACS Energy Letters, 2020, 5(7): 2376-2400.
[20] WANG L P, CAO Z Y, ZHUANG P Y, et al. Electrochemical
分发育,也可避免颗粒因团聚而产生较大尺寸的二 injection oxygen vacancies in layered Ca 2Mn 3O 8 for boosting zinc-
ion storage[J]. ACS Applied Materials & Interfaces, 2021, 13(11):
次颗粒。 13338-13346.
[21] HE P, YAN M Y, ZHANG G B, et al. Layered VS 2 nanosheet-based
参考文献: aqueous Zn ion battery cathode[J]. Advanced Energy Materials,
2017, 7(11): 1601920.
[1] LI Q (李芹), SHENG L C (盛利成), DONG L M (董丽敏), et al. [22] WANG X Y, MA L W, SUN J C. Vanadium pentoxide nanosheets
Preparation and electrochemical properties of ZnCo 2O 4 and ZnCo 2O 4/rGO in-situ spaced with acetylene black as cathodes for high-performance
composites[J]. Journal of Materials Engineering (材料工程), 2019, zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2019,
47(4): 71-76. 11(44): 41297-41303.
[2] WU Y F (吴怡芳), CHONG S K (崇少坤), LIU Y N (柳永宁), et al. [23] HUANG S, HE S, QIN H, et al. Oxygen defect hydrated vanadium
Research progress on carbon nano-materials to construct Li-ion and dioxide/graphene as a superior cathode for aqueous Zn batteries[J].
Li-S batteries of high performance[J]. Journal of Materials ACS Applied Materials & Interfaces, 2021, 13(37): 44379-44388.
Engineering (材料工程), 2020, 48(4): 25-35. [24] LU K, SONG B, ZHANG Y X, et al. Encapsulation of zinc
[3] LING R, CAO B Q, QI W T, et al. Three-dimensional Na 3V 2(PO 4) 3@ hexacyanoferrate nanocubes with manganese oxide nanosheets for
carbon/N-doped graphene aerogel: A versatile cathode and anode high-performance rechargeable zinc-ion batteries[J]. Journal of Materials
host material with high-rate and ultralong-life for sodium storage[J]. Chemistry A, 2017, 5(45): 23628-23633.
2+
Journal of Alloys and Compounds, 2021, 869: 159307. [25] WANG F, HU E Y, SUN W, et al. A rechargeable aqueous Zn -
[4] HUANG X B, YI X, YANG Q, et al. Outstanding electrochemical battery with high power density and a long cycle-life[J]. Energy &
performance of N/S co-doped carbon/Na 3V 2(PO 4) 3 hybrid as the Environmental Science, 2018, 11(11): 3168-3175.
cathode of a sodium-ion battery[J]. Ceramics International, 2020, [26] LI G L, YANG Z, JIANG Y, et al. Hybrid aqueous battery based on
46(18): 28084-28090. Na 3V 2(PO 4) 3/C cathode and zinc anode for potential large-scale
[5] ZHANG X H, CHEN H L, LIU W L, et al. A long-cycling aqueous energy storage[J]. Journal of Power Sources, 2016, 308: 52-57.
zinc-ion pouch cell: NASICON-type material and surface modification[J]. [27] LI W, WANG K L, CHENG S J, et al. A long-life aqueous Zn-ion
Chemistry-An Asian Journal, 2020, 15(9): 1430-1435. battery based on Na 3V 2(PO 4) 2F 3 cathode[J]. Energy Storage
[6] MA J (马婧), WANG F P (王芳平), ZHOU K L (周凯玲), et al. Materials, 2018, 15: 14-21.
Preparation of sandwich-type biochar electrode materials and [28] GUPTA T, KIM A, PHADKE S, et al. Improving the cycle life of a
performance of supercapacitor[J]. Fine Chemicals (精细化工), 2021, high-rate, high-potential aqueous dual-ion battery using hyper-dendritic
38(2): 374-379. zinc and copper hexacyanoferrate[J]. Journal of Power Sources,
[7] ZHANG P P (张盼盼), HUANG H (黄惠), HE Y P (何亚鹏), et al. 2016, 305: 22-29.
Recent development of Li-rich manganese cathode material for Li-ion [29] CHAE M, HEO J, KWAK H, et al. Organic electrolyte-based
batteries[J]. Journal of Materials Engineering (材料工程), 2021, rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate
49(3): 48-58. as a cathode material[J]. Journal of Power Sources, 2017, 337:
[8] NI S B, LIU J L, CHAO D L, et al. Vanadate-based materials for 204-211.
Li-ion batteries: The search for anodes for practical applications[J]. [30] HOU Z G, ZHANG X Q, LI X N, et al. Surfactant widens the
Advanced Energy Materials, 2019, 9(14): 1803324. electrochemical window of an aqueous electrolyte for better
[9] ZHENG Q, YI H M, LI X F, et al. Progress and prospect for rechargeable aqueous sodium/zinc battery[J]. Journal of Materials
NASICON-type Na 3V 2(PO 4) 3 for electrochemical energy storage[J]. Chemistry A, 2017, 5(2): 730-738.
Journal of Energy Chemistry, 2018, 27(6): 1597-1617. [31] ZHANG H, HASA I, BUCHHOLZ D, et al. Effects of nitrogen
[10] ZHOU J (周佳), LIU J (刘杰), CHENG S Y (程思远), et al. doping on the structure and performance of carbon coated Na 3V 2(PO 4) 3
Preparation of Al-doped NiCo 2S 4 electrode material and its cathodes for sodium-ion batteries[J]. Carbon, 2017, 124: 334-341.
electrochemical properties[J]. Fine Chemicals (精细化工), 2022, [32] ZHANG X X, MA J, HU P, et al. An insight into failure mechanism
39(5): 972-978. of NASICON-structured Na 3V 2(PO 4) 3 in hybrid aqueous
[11] JIANG Y, WU Y, CHEN Y X, et al. Design nitrogen (N) and sulfur rechargeable battery[J]. Journal of Energy Chemistry, 2019, 32: 1-7.
(S) co-doped 3D graphene network architectures for [33] LI L F (李玲芳), YANG J X (杨家兴), WU C (吴超). Research
high-performance sodium storage[J]. Small, 2018, 14: 1703471. progress of vanadium phosphate sodium for cathode material of
[12] ZHANG T (张涛), ZHOU K F (周坤蕃), YANG S N (阳思念), et al. Na-ion batteries[J]. Journal of Synthetic Crystals (人工晶体学报),
Application of Al intercalated (NH 4) 2V 10O 25•8H 2O cathode material 2017, 46(11): 2238-2243.
in aqueous zinc ion battery[J]. Fine Chemicals (精细化工), 2022, [34] LIM S J, HAN D W, NAM D H, et al. Structural enhancement of
39(2): 282-287. Na 3V 2(PO 4) 3/C composite cathode materials by pillar ion doping for
[13] ZHOU S H (周世昊), ZHAO C X (赵才贤), ZHANG T (张涛), et al. high power and long cycle life sodium-ion batteries[J]. Journal of
Preparation of Zn Mn 2O 4/Mn 2O 3/CNT composite cathode material Materials Chemistry A, 2014, 2(46): 19623-19632.
and its application in aqueous zinc-ion batteries[J]. Fine Chemicals [35] DUAN W C, ZHU Z Q, LI H, et al. Na 3V 2(PO 4) 3@C core-shell
(精细化工), 2021, 38(4): 765-773. nanocomposites for rechargeable sodium-ion batteries[J]. Journal of
[14] LI W, WANG K L, ZHOU M, et al. Advanced low-cost, Materials Chemistry A, 2014, 2(23): 8668-8675.
high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled
by a dendrite-free zinc anode and concentrated electrolyte[J]. ACS (下转第 672 页)