Page 142 - 《精细化工》2023年第4期
P. 142
g828g ㏳ࡃጒ FINE CHEMICALS す 40 ࢤ
[7] MOGHADAM M T, LESAGE G, MOHAMMADI T, et al. Improved Preparation of nano-TiO 2 via microemulsion and its modification
antifouling properties of TiO 2/PVDF nanocomposite membranes in with graphene[J]. Journal of Chemical Engineering of Chinese
UV-coupled ultrafiltration[J]. Journal of Applied Polymer Ence, Universities (倅ᵎࡃ႓ጒ⼸႓្), 2017, 31(1): 133-141.
2015, 132(21): 41731-41744. [27] MA W Z, RAJABZADEH S, SHAIKH A R, et al. Effect of type of
[8] ZHAO Y H, QIAN Y L, ZHU B K, et al. Modification of porous poly(ethylene glycol) (PEG) based amphiphilic copolymer on
poly(vinylidene fluoride) membrane using amphiphilic polymers antifouling properties of copolymer/poly(vinylidene fluoride)
with different structures in phase inversion process[J]. Journal of (PVDF) blend membranes[J]. Journal of Membrane Science, 2016,
Membrane Science, 2008, 310(1): 567-576. 514(15): 429-439.
[9] DU J Y (䩓␏). Research on the treament performance of humic [28] XUAN H X, HE C J. Improved antifouling property of PVDF
acid in water by the prepered ZnS/GO modified PVDF membran[D]. membranes with crosslinked PEG[J]. Advanced Materials Research,
Harbin: Harbin Institute of Technology (৵ᅁ␕ጒ͇๔႓), 2018. 2014, 1078(10): 53-56.
[10] FENG M (ۜ᩼), WANG L (⢸ⷷ), YANG Z H (Ვၽᮄ) , et al. [29] ZHANG Z W (ᑍᔄь), XU B (ᒽ᪹), ZHANG Y M (ᑍ᩼) , et al.
Fouling behavior of ultrafiltration membrane caused by protein and Removal of ammonia nitrogen from micro-polluted water by GO-TiO 2
humic acid mixtures[J]. Membrane Science and Technology (㛉႓ modified PVDF composite membrane[J]. China Environmental
̻ឭᱜ) 2020, 40(3): 22-27. Science (͚ప⣜ධ႓), 2019, 39(6): 2395-2401.
[11] ZHU J Y, HOU J W, ZHANG Y T, et al. Polymeric antimicrobial [30] WANG T, ZHAO L, SHEN J N, et al. Enhanced performance of
membranes enabled by nanomaterials for water treatment[J]. Journal polyurethane hybrid membranes for CO 2 separation by incorporating
of Membrane Science, 2017, 550(15): 173-197. graphene oxide: The relationship between membrane performance
[12] LI Y, RUAN S C, XU X T, et al. One-dimensional nanomaterial- and morphology of graphene oxide[J]. Environmental Science &
assembled macroscopic membranes for water treatment[J]. Nano Technology, 2015, 49(13): 8004-8011.
Today, 2017, 17(5): 79-95. [31] HUSSAIN M, TARIQ S, AHMAD M, et al. Ag TiO 2 nanocomposite
[13] LI X, SOTTO A, LI J S, et al. Progress and perspectives for synthesis for environmental and sensing applications[J]. Materials Chemistry
of sustainable antifouling composite membranes containing in situ and Physics, 2016, 181(15): 194-203.
generated nanoparticles[J]. Journal of Membrane Science, 2017, [32] RABIEE H, FARAHANI M H D A, VATANPOUR V. Preparation
524(16): 502-528. and characterization of emulsion poly(vinyl chloride) (EPVC)/TiO 2
[14] RUAN W X (䭛᪴⺒), LIAO J B (ᐃӷ᪹), WANG G Q (⢸పᎳ), et nanocomposite ultrafiltration membrane[J]. Journal of Membrane
al. Hydrophilic modification of polyvinylidene fluoride (PVDF) Science, 2014, 472(15): 185-193.
membrane with ionic liquid grafted nano-SiO 2 particles[J]. Journal of [33] LI J F, XU Z L, YANG H. Microporous polyethersulfone membranes
Chemical Engineering of Chinese Universities (倅ᵎࡃ႓ጒ⼸႓្), prepared under the combined precipitation conditions with
2015, 29(1): 185-194. non-solvent additives[J]. Polymers for Advanced Technologies, 2007,
[15] HEGAB H M, ZOU L D. Graphene oxide-assisted membranes: 19(4): 251-257.
Fabrication and potential applications in desalination and water [34] KUMAR M, ULBRICHT M. Novel ultrafiltration membranes with
purification[J]. Journal of Membrane Science, 2015, 484(15): adjustable charge density based on sulfonated poly(arylene ether
95-106. sulfone) block copolymers and their tunable protein separation
[16] ONG C S, GOH P S, LAU W J, et al. Nanomaterials for biofouling performance[J]. Polymers for Advanced Technologies, 2014, 55(1):
and scaling mitigation of thin film composite membrane: A 354-365.
review[J]. Desalination, 2016, 393(1): 2-15. [35] WU L G, YANG C H, WANG T, et al. Enhanced the performance of
[17] BEHBOUDI A, JAFARZADEH Y, YEGANI R. Preparation and graphene oxide/polyimide hybrid membrane for CO 2 separation by
characterization of TiO 2 embedded PVC ultrafiltration membranes[J].
Chemical Engineering Research and Design, 2016, 114(15): 96-107. surface modi¿cation of graphene oxide using polyethylene glycol[J].
Applied Surface Science, 2018, 440(15): 1063-1072.
[18] GANESH B M, ISLOOR A M, ISMAIL A F. Enhanced [36] YANG J, QI G Q, LIU Y, et al. Hybrid graphene aerogels/phase
hydrophilicity and salt rejection study of graphene oxide-polysulfone
mixed matrix membrane[J]. Desalination, 2013, 313(7): 199-207. change material composites: Thermal conductivity,
[19] WANG Z H, YU H R, XIA J F, et al. Novel GO-blended PVDF shape-stabilization and light-to-thermal energy storage[J]. Carbon,
ultrafiltration membranes[J]. Desalination, 2012, 299(1): 50-54. 2016, 100(5): 693-702.
[20] SHI F M, MA Y X, MA J, et al. Preparation and characterization of [37] YUAN H K, REN J. Preparation of poly(vinylidene Àuoride)
PVDF/TiO 2 hybrid membranes with ionic liquid modified nano-TiO 2 (PVDF)/acetalyzed poly(vinyl alcohol) ultra¿ltration membrane with
particles[J]. Journal of Membrane Science, 2013, 427(15): 259-269. the enhanced hydrophilicity and the anti-fouling property[J]. Chemical
[21] ZHAO C Q, XU X C, CHEN J, et al. Highly effective antifouling Engineering Research and Design, 2017, 121(15): 348-359.
performance of PVDF/graphene oxide composite membrane in [38] BORMASHENKO Y, POGREB R, STANEVSKY O, et al. Vibrational
membrane bioreactor (MBR) system[J]. Desalination, 2014, 340(1): spectrum of PVDF and its interpretation[J]. Polymer Testing, 2004,
59-66. 23(7): 791-796.
[22] ZHANG J G, XU Z W, MAI W, et al. Improved hydrophilicity, [39] MOHAMMADI B, YOUSEFI A A, BELLAH S M. Effect of tensile
permeability, antifouling and mechanical performance of PVDF strain rate and elongation on crystalline structure and piezoelectric
composite ultrafiltration membranes tailored by oxidized properties of PVDF thin ¿lms[J]. Polymer Testing, 2007, 26(1): 42-50.
low-dimensional carbon nanomaterials[J]. Journal of Materials [40] LAYEK R K, SAMANTA S, CHATTERJEE D P, et al. Physical and
Chemistry A, 2013, 1(19): 3101-3111. mechanical properties of poly(methylmethacrylate)-functionalized
[23] ZINADINI S, ZINATIZADEH A A, RAHIMI M, et al. Preparation graphene/poly(viny-lidine Àuoride) nanocomposites: Piezoelectric ȕ
of novel antifouling mixed matrix PES membrane by embedding polymorph formation[J]. Polymer, 2010, 51(24): 5846-5856.
grapheme oxide nanoplates[J]. Journal of Membrane Science, 2014, [41] ZHANG S Y (ᑍ㏺ᇖ), DING S W (̮ธ᪴), LIU S J (݅⋾ཌ).
453(1): 292-301. Synthesis and photocatalytic property of nano-ZnO[J]. Acta Chimica
[24] FEI H L, DONG J C, ARELLANO-JIMÉNEZ M J, et al. Atomic Sinica (ࡃ႓႓្), 2002, 60(7): 246-249.
cobalt on nitrogen-doped graphene for hydrogen generation[J]. [42] HONG J M, HE Y. Effects of nano sized zine oxide on the
Nature Communications, 2015, 6(4): 8668-9668. performance of PVDF microfiltration membranes[J]. Desalination,
[25] SI Y C, SAMULSKI E T. Exfoliated graphene separated by platinum 2012, 302(38): 71-79.
nanoparticles[J]. Chemistry of Materials, 2008, 20(21): 6792-6797.
[26] TIAN G F (⩝ڠ䨸), LIU H E (݅чདྷ), CHEN S (䭵❪) , et al. 喍̸䒙す 837 䶢喎