Page 224 - 《精细化工》2023年第4期
P. 224

g910g                             ㇫㏳ࡃጒ   FINE CHEMICALS                                 す 40 ࢤ

                 introduced by fluorination on the desalination properties of activated   application[J]. Ionics, 2017, 23(10): 2919-2930.
                 carbon as the cathode for capacitive deionization[J]. Desalination,   [23]  LU X W, XIANG K X, ZHOU W, et al. Porous carbons derived from
                 2019, 457: 1-7.                                   tea-seed shells and their improved electrochemical performance in
            [10]  HUANG  W, ZHANG  Y M,  BAO S  X,  et al. Desalination by   lithium-ion batteries and supercapacitors[J]. Materials  Technology,
                 capacitive deionization process using nitric acid-modified activated   2018, 33(7): 443-450.
                 carbon as the electrodes[J]. Desalination, 2014, 340: 67-72.   [24]  YU X  H (⻦ڡ⊤),  LUO Q L  (㒄命㞜), PAN J (⒅ݾ),  et al.
            [11]  BHARATH G, RAMBABU K, BANAT F,  et al. Enhanced   Preparation and properties of flexible supercapacitor based on biochar
                 electrochemical performances of peanut shell derived activated   and solid gel-electrolyte[J]. CIESC Journal (ࡃጒ႓្), 2019, 70(9):
                 carbon and its Fe 3O 4 nanocomposites for capacitive deionization of   3590-3600.
                 Cr(Ę) ions[J]. The Science of the Total Environment, 2019, 691:   [25]  PANDEY L, SARKAR S, ARYA A,  et al. Fabrication of activated
                 713-726.                                          carbon electrodes  derived from peanut shell for high-performance
            [12]  WANG J (⢸◜), ZHANG P (ᑍ৮), ZHANG S Q (ᑍ㜿ᮡ), et al.   supercapacitors[J]. Biomass Conversion and Biorefinery, 2021: 1-10.
                 Effect of temperature on physicochemical properties of straw biochar:   [26]  GAO C (倅䊲).  Preparation  of  biochar-based electrode and its
                 Focus on surface appearance and electrochemical properties[J]. Acta   application in  bioelectrochemistry[D].  Dalian: Dalian University of
                 Energiae Solaris Sinic (๗䭠㘪႓្), 2022, 43(5): 2021-1268.   Technology (๔䔋⤳ጒ๔႓), 2019.
            [13] YANG K (Ვज). Study on activation of modified activated carbon   [27]  BAI Y X, ZHANG J, YANG Y B,  et al. Enhance electrochemical
                 electrode and its electroadsorption deionization[D]. Xi'an: Xi'an   performance of LiFePO 4 cathode material by Al-doped Li 7La 3Zr 2O 12
                 Polytechnic University (㺬Ⴖጒ⼸๔႓), 2019.            and carbon co-coating surface modification[J]. Journal of Alloys and
            [14]  LI L, HAN E, JIAO M Y, et al. The effect of Ag or Zn composite on   Compounds, 2020, 843: 154915.
                 the electrochemical performance of Li 2FeSiO 4 cathode materials[J].   [28]  TAGAYA  T, HATAKEYAMA Y, SHIRAISHI S,  et al. Nitrogen-
                 Ionics, 2020, 26(6): 2727-2736.                   doped seamless activated carbon electrode with excellent durability
            [15]  LI X  L (ᱻ⻭⣟), LI C B (叻䪬᪹), LI S  Y (ᱻ㘉㠞),  et al.   for electric double layer capacitor[J]. Journal of the Electrochemical
                 Electro-adsorption of Cr( ) Ď in water on aluminum modified activated   Society, 2020, 167(6): 060523.
                 carbon fiber[J]. Nonferrous Metals (ᰶ㞟䛾ᆋ), 2020, (5): 86-92,99.   [29]  CHEN Z H (䭵ᑍ䆗), MA H F (侙≗㟠), ZHU H F (ᱞⅶ下), et al.
            [16]  LU W (࢏ь), ZHANG S P (ᑍΓᎠ), LIU X Z (݅ᓰᔄ),  et al.   Electrochemical properties of straw-based carbon materials in Li 2SO 4
                 Effects of pretreatment methods  on  properties of activated carbon   electrolyte[J]. CIESC Journal (ࡃጒ႓្), 2018, 69(7): 3293-3299.
                 from rice husk[J]. Transactions of the Chinese Society of Agricultural   [30] WAN Y (̴ళ). Preparation of xylose residue derived biochar and its
                 Engineering (ۉ͇ጒ⼸႓្), 2018, 34(S1): 157-163.      electrochemical & adsorptive performance[D]. Harbin: Harbin Institute
            [17]  HAN J L (䴖䛾⣟), CHEN K (䭵㦢), WU B (ₓ᪹), et al. Preparation   of Technology (৵ᅁ␕ጒ͇๔႓), 2018.
                 of mesoporous magnetic composite carbon spheres with high adsorption   [31]  WANG J M (⢸ߍ᩼). Study on characteristics and electrochemical
                 properties[J]. Fine Chemicals (㇫㏳ࡃጒ), 2020, 37(4): 689-695, 709.   properties of ginger straw carbon[D]. Jiƍnan: Shandong University
            [18]  SU S Y, LIN Y M, DAI H M, et al. Nitrogen-doped porous graphene   (ᆞ͉๔႓), 2019.
                 coated with Fe 3O 4 nanoparticles  for advanced supercapacitor   [32] GAO Y (倅ߴ). Preparation of carbon-based composite electrode and
                 electrode material with improved electrochemical performance[J].   its electrosorption performance for heavy metal ions[D]. Zhenjiang:
                 Particle & Particle Systems Characterization, 2020, 37(4): 2000011.   Jiangsu University of Science and Technology (↌㟼⻾ឭ๔႓),
            [19]  JAIN A, TRIPATHI S K. Fabrication and characterization of energy   2021.
                 storing supercapacitor  devices using coconut shell based activated   [33]  QI J H (ᝇᐧࡻ), LIANG Z S (ᶮჄ䨮), DENG X P (䗀㺬Ꭰ), et al.
                                                                             2+
                 charcoal electrode[J]. Materials Science  and Engineering: B, 2014,   Adsorption of Cu on to chestnut (Castanea mollissima) shells equilibrium,
                 183: 54-60.                                       kinetics and process design[J]. Acta Scientiae Circumstantiae (⣜ධ
            [20]  XIE Z  Z,  CHENG J, YAN J  B,  et al. Polydopamine  modified   ⻾႓႓្), 2009, 29(10): 2141-2147.
                 activated carbon for capacitive desalination[J]. Journal of the   [34]  ZENG C J (ᰫ㡣㣷). Sorption and desorption of heavy metal Cu(Ĕ)
                 Electrochemical Society, 2017, 164(12): A2636.    on the biochar under electric field[D]. Shanghai: Shanghai University
            [21]  FU X Y, WANG J Q, ZHANG L L, et al. Enhanced electrochemical   (̷⊤๔႓), 2021.
                 performance of Li 1.2Mn 0.54Ni 0.13Co 0.13O 2 prepared by using activated   [35]  LIN Y H (᳄✂ࡻ), WANG Y L (⢸⃲߈). Removal of copper ions by
                 carbon as template and carbon source[J]. Ionics, 2020, 26(9): 4423- 4431.   electrosorption on modified activated carbon fiber with TiO 2-coating
            [22]  YADAV M S, TRIPATHI M S. Synthesis and characterization of   [J]. Chemical Industry and Engineering Progress (ࡃጒ䔈ᆂ), 2011,
                 nanocomposite NiO/activated charcoal electrodes for supercapacitor   30(S1): 864-869.




            喍̷ᣒす 844 䶢喎                                            resins under lower curing temperature via complex curing agent[J].
                                                                   Polymers for Advanced Technologies, 2020, 31(2): 233-239.
            [16]  LIU C Z,  ZHANG B, SUN M M,  et al. Novel low-melting   [20]  WENG Z H, QI Y, ZONG L S, et al. Multiple-SO 3H functioned ionic
                 bisphthalonitrile monomers: Synthesis and their excellent adhesive   liquid as efficient curing agent for phthalonitrile-terminated
                 performance[J]. European Polymer Journal, 2021, 153: 110511.   poly(phthalazinone ether nitrile)[J]. Chinese Chemical Letters, 2017,
            [17]  HU J H, XIE H X, ZHU Z Z, et al. Reducing the melting point and   28(5): 1069-1073.
                 curing temperature of aromatic cyano-based resins simultaneously   [21]  HE X, LIAO S J, CHEN M H, et al. Study on the phthalonitrile cured
                 through a Brønsted acid-base synergistic strategy[J]. Polymer, 2022,   via bio-tyrosine cyclic peptide: Achieving good thermal properties
                 246: 124745.                                      under low post-curing temperature[J]. Polymer Degradation and
            [18]  QI Y, WENG Z H, SONG C, et al. Deep eutectic solvent for curing   Stability, 2020, 181: 109289.
                 of phthalonitrile resin: Lower the curing temperature but improve the   [22]  ZOU X T (䗦ᮀྤ), ZHANG J (ᑍ䩓), XIAO Y (㗃ᅔ),  et al.
                 properties of thermosetting[J]. High Performance Polymers, 2021,   Synthesis of gallic acid substituted  zinc phthalocyanine and its
                 33(5): 538-545.                                   alkali-sensitive fluorescence[J]. Fine Chemicals (㇫㏳ࡃጒ), 2020,
            [19]  WENG Z H, HU Y, QI Y, et al. Enhanced properties of phthalonitrile   37(8): 1615-1620.
   219   220   221   222   223   224   225   226   227   228   229