Page 85 - 《精细化工》2023年第5期
P. 85

第 5 期                    郭   松,等:  聚(双环戊二烯-co-环辛二烯)微流控芯片的制备                             ·1005·


                 可以看出,液滴尺寸为 41.7~71.2 μm,CV 均≤                 [7]   JACOB B N, ROBERT L H, HAIFA M  A,  et al. Microfluidics:
                                                                   Innovations in materials and their fabrication and functionalization[J].
            4.9%,说明液滴呈单分散性。结果表明,聚(双环戊
                                                                   Anal Chem, 2020, 92(1): 150-168.
            二烯-co-环辛二烯)微流控芯片能用于单分散微液滴                          [8]   FIORINI G S, CHIU D T. Disposable microfluidic devices:
            的制备,可作为 PDMS 微流控芯片的替代方案之一。                             Fabrication, function, and application[J]. BioTechniques, 2005,
                                                                   38(3): 429-446.
                 本文将热固性树脂 PDCPD 引入微流控芯片的                       [9]   EMMANUEL R, JEAN-CHRISTOPHE G, TEODOR V. Thermoplastic
            制造技术研究,利用 PDCPD 共聚物的回弹性和                               elastomers for microfluidics: Towards a high-throughput fabrication
                                                                   method of multilayered  microfluidic devices[J]. Lab Chip, 2011,
            PDCPD 凝胶的化学活性,开发了简单、高效的微流                              11(18): 3193-3196.
            控芯片制造技术,并验证了微流控芯片制备单分散                             [10]  CHU M, NGUYEN T T, LEE E K, et al. Plasma free reversible and
                                                                   irreversible microfluidic bonding[J]. Lab Chip, 2017, 17(2): 267-273.
            液滴的能力。                                             [11]  SURYAWANSHI P L, GUMFEKAR S P, BHANVASE B A, et al. A
                                                                   review on microreactors: Reactor fabrication, design, and
            3   结论                                                 cutting-edge applications[J]. Chem Eng Sci, 2018, 189: 431-448.
                                                               [12]  REN K, ZHOU  J, WU H. Materials for microfluidic chip
                                                                   fabrication[J]. Acc Chem Res, 2013, 46(11): 2396-2406.
                (1)通过引入 COD 作为 DCPD 聚合的共聚单
                                                               [13]  HOU X, ZHANG Y S, SANTIAGO  G T,  et al. Interplay between
            体,当 COD 与 DCPD 的质量比为 1 : 1 时,合成出具                      materials and microfluidics[J]. Nat Rev Mater, 2017, 2: 17028.
            有弹性体性质的聚(双环戊二烯-co-环辛二烯)共聚物。                        [14]  CHASTEK T Q, BEERS K L, AMIS E J. Miniaturized dynamic light
                                                                   scattering instrumentation for use in microfluidic applications[J]. Rev
                (2)以 SU-8 硅片作为模具,验证了共聚物盖                           Sci Instrum, 2007, 78(7): 072201.
            片微尺寸加工的高精准度。利用半固化 PDCPD 凝胶                         [15]  TEH S Y, LIN R, HUNG L H, et al. Droplet microfluidics[J]. Lab
                                                                   Chip, 2008, 8(2): 198-220.
            的反应特性,完成共聚物芯片的键合,最终建立了聚                            [16]  NGE P N, ROGERS C I, WOOLLEY A T. Advances in microfluidic
            (双环戊二烯-co-环辛二烯)微流控芯片的加工技术。                             materials, functions, integration, and applications[J]. Chem Rev,
                                                                   2013, 113(4): 2550-2583.
                (3)通过单分散液滴的制备验证了聚(双环戊二                         [17]  ELODIE S,  COLEMAN M, PIETRO M,  et al. Rapid prototyping
            烯-co-环辛二烯)微流控芯片的使用性能。在两相微                              polymers for microfluidic devices and high pressure injections[J].
                                                                   Lab Chip, 2011, 11(22): 3752-3765.
            流控体系中得到了单分散的微液滴,调节油相流速                             [18]  FIORINI G S, YIM M, JEFFRIES G D M,  et al. Fabrication
            可以调变微液滴的尺寸大小。                                          improvements for thermoset polyester (TPE) microfluidic devices[J].
                                                                   Lab Chip, 2007, 7(7): 923-926.
                本文所报道的聚(双环戊二烯-co-环辛二烯)微流                       [19]  KUO J S, CHIU D T. Disposable microfluidic substrates: Transitioning
            控芯片及制作工艺具有以下特点:工艺简单、成型                                 from the research laboratory into the clinic[J]. Lab Chip, 2011,
                                                                   11(16): 2656-2665.
            精度高;耗时短,全工艺流程耗时<1 h;键合方法                           [20]  JAFAR  A, BURHANUDDIN Y M. A new UV-curing  elastomeric
            简单高效;使用步骤简单。可见,聚(双环戊二烯-co-                             substrate for rapid prototyping of microfluidic devices[J]. J Micromech
                                                                   Microeng, 2012, 22(3): 035006.
            环辛二烯)微流控芯片具有在部分应用领域替代                              [21]  SIMON R, ETIENNE P, BRICE C, et al. "All in one" epoxy-based
            现有 PDMS 芯片的潜力。在后续的研究中,作者                               microfluidic chips at your fingertips[J]. ACS  Appl Polym Mater,
                                                                   2021, 3(2): 801-810.
            将以液滴微流控技术为基础,开展聚(双环戊二烯-                            [22]  CHENG Z, GU Y, LI S L, et al. Enclosed casting of epoxy resin for
            co-环辛二烯)微流控芯片的应用研究。                                    rapidly fabrication of rigid microfluidic chips[J]. Sensors and
                                                                   Actuators B, 2017, 252: 785-793.
            参考文献:                                              [23]  KIM J Y, DE MELLO A J, CHANG S I, et al. Thermoset polyester
                                                                   droplet-based microfluidic devices for high frequency generation[J].
            [1]   SALAFI T, ZEMING K K, ZHANG Y. Advancements in microfluidics   Lab Chip, 2011, 11(23): 4108-4112.
                 for nanoparticle separation[J]. Lab Chip, 2016, 17(1): 11-33.   [24] KOVAČIČ S, SLUGOVC C. Ring-opening metathesis polymerisation
            [2]   PHAN  D T,  JIN L, WUSTONI  S,  et al. Buffer-free integrative   derived poly(dicyclopentadiene) based  materials[J]. Mater Chem
                 nanofluidic device for  real-time continuous flow bioassays by ion   Front, 2020, 4(8): 2235-2255.
                 concentration polarization[J]. Lab Chip, 2018, 18(4): 574-584.   [25]  CUTHBERT T J,  LI T, SPEED A  W H,  et al. Structure of the
            [3]   DU G, FANG Q, DEN TOONDER J M. Microfluidics for cell-based   thermally induced cross-link in C-linked methyl ester-functionalized
                 high throughput screening platforms-A review[J]. Anal Chim Acta,   polydicyclopentadiene (fPDCPD)[J]. Macromolecules, 2018, 51(5):
                 2016, 903: 36-50.                                 2038-2047.
            [4]   JACKSON J M, WITEK M A, KAMANDE J W, et al. Microfluidics   [26] KOVAČIČ S, JEŘÁBEK K, KRAJNC P,  et al. Ring opening
                 for the detection  of minimal residual disease in acute  myeloid   metathesis polymerisation of emulsion templated dicyclopentadiene
                 leukemia patients using circulating leukemic  cells selected from   giving open porous materials with excellent mechanical properties[J].
                 blood[J]. Analyst, 2016, 141(2): 640-651.         Polym Chem, 2012, 3(2): 325-328.
            [5]   TRANTIDOU T,  FRIDDEN M S, SALEHI-REYHANI A,  et al.   [27] KOVAČIČ S, KRAJNC P, SLUGOVC  C. Inherently reactive
                 Droplet microfluidics for the construction of compartmentalised   polyHIPE material from dicyclopentadiene[J]. Chem Commun, 2010,
                 model membranes[J]. Lab Chip, 2018, 18(17): 2488-2509.   46(40): 7504-7506.
            [6]   GUO S, YAO T, JI X B, et al. Versatile preparation of non-spherical   [28]  LEE J K, GOULD G L. Polydicyclopentadiene based aerogel: A new
                 multiple hydrogel core PAM/PEG emulsions and  hierarchical   insulation material[J]. J Sol-Gel Sci Technol, 2007, 44(1): 29-40.
                 hydrogel microarchitectures[J]. Angewandte Chemie International
                 Edition, 2014, 53(29): 7504-7509.                                           (下转第 1014 页)
   80   81   82   83   84   85   86   87   88   89   90