Page 105 - 《精细化工》2023年第8期
P. 105

第 8 期                    徐群娜,等:  层层组装法制备抗菌-阻燃型生物质基复合涂层                                  ·1719·


            [25]  TANG T T, LIU  X  Y, HAO S X.  Mechanism  and preparation   2022, 47(6): 806-813.
                 methods of inorganic fire-retardant[J]. Advanced Materials Research,   [33]  MOHAMMAD Z A, THERESE H B, OKSANA B, et al. Chitosan
                 2013, 2605(785/786): 757-760.                     fibers with improved biological and mechanical properties for tissue
            [26]  HOU  Y B, XU Z  M, CHU F K,  et al. A review on  metal-organic   engineering applications[J]. Journal of the Mechanical Behavior of
                 hybrids as flame retardants for enhancing fire safety of polymer   Biomedical Materials, 2013, 20: 217-226.
                 composites[J]. Composites Part B: Engineering, 2021, 221: 109014.   [34]  MOHAMMAD Z A, THERESE H B, HENRY L W, et al. Improving
            [27] ZHAO L (赵丽), WANG L Y (王立艳), XIAO S S (肖姗姗), et al.   the mechanical properties of chitosan-based heart valve scaffolds
                 Research progress  in preparation of  magnesium hydroxide flame   using chitosan fibers[J]. Journal  of  the Mechanical Behavior of
                 retardant[J]. Inorganic Chemicals Industry (无机盐工业), 2018,   Biomedical Materials, 2012, 5(1): 171-180.
                 50(3): 16-19.                                 [35]  VIMALADEVI S, PANDA S K, XAVIER K A,  et al. Packaging
            [28]  LIAO S (廖霜), LIU T (刘婷), HAN L (韩雷),  et al. Research   performance of organic acid incorporated chitosan films on dried
                 progress on preparation  and  modification of  magnesium  hydroxide   anchovy (Stolephorus indicus)[J]. Carbohydrate Polymers, 2015,
                 flame retardant[J]. Guangdong Chemical Industry (广东化工), 2018,   127: 189-194.
                 45(16): 133-135.                              [36]  ZHANG R T (张锐涛), WANG Y H (王彦辉), WEI K Y (魏凯耀), et al.
            [29] https://baike.baidu.com/item/偏磷酸/7538544.         Flame retardant and foaming technology of  polymer composite
            [30]  TEBOHO C M, EMMANUEL R S, SUPRAKAS S R, et al. Flame   sleeper[J]. New Chemical Materials (化工新型材料), 2019, 47(S1):
                 retardancy efficacy of phytic acid: An overview[J]. Journal of   146-149.
                 Applied Polymer Science, 2022, 139(27): e52495.   [37] YANG T (杨婷), WANG W L (王伟铃), MENG Z W (孟正伟) , et al.
            [31]  ZHAO X J, LIANG Z W, HUANG Y B, et al. Influence of phytic   Study on flame retardance and mechanical properties of LLDPE
                 acid on flame retardancy and adhesion performance enhancement of   filled with magnesium hydroxide and red phosphorus[J]. Plastics
                 poly(vinyl alcohol) hydrogel coating to wood substrate[J]. Progress   Science and Technology (塑料科技), 2015, 43(1): 90-93.
                 in Organic Coatings, 2021, 139(27): 106453.   [38]  YANG W, TAWIAH B, YU C,  et al. Manufacturing, mechanical
            [32]  WANG Y W (王益文), ZHOU J R (周杰睿), FENG X X (冯新星),   and flame retardant properties of  poly(lactic acid) biocomposites
                 et al. Preparation  of new P-N synergistic flame retardant and its   based  on calcium magnesium phytate and carbon  nanotubes[J].
                 application in  PA66[J]. Journal of Zhejiang Sci-Tech University   Composites  Part  A: Applied Science  and Manufacturing, 2018,
                 (Natural Sciences  Edition) (浙江理工大学学报:  自然科学版),   (110A): 227-236.




            (上接第 1709 页)                                           126(42): 13778-13786.
                                                               [22]  YOU B, WEN N  G, SHI L,  et al.  Facile fabrication of a three-
            [10]  YU Z Y, WANG C F, LING L T, et al. Triphase microfluidic-directed
                 self-assembly: Anisotropic colloidal photonic crystal supraparticles and   dimensional colloidal crystal film  with large-area and robust
                 multicolor  patterns  made easy[J]. Angewandte Chemie International   mechanical properties[J]. Journal of  Materials Chemistry, 2009,
                 Edition, 2012, 51(10): 2375-2378.                 19(22): 3594-3597.
            [11]  JIANG P, BERTONE J F,  COLVIN  V L.  A lost-wax approach to   [23]  TANG B T, WU  C, LIN T,  et al. Heat-resistant  PMMA photonic
                 monodisperse colloids and  their  crystals[J]. Science, 2001,   crystal films with  bright  structural color[J]. Dyes and Pigments,
                 291(5503): 453-457.                               2013, 99(3): 1022-1028.
            [12]  LEE H S, SHIM T S, HWANG H, et al. Colloidal photonic crystals   [24]  SHEN Z H, SHI L, YOU B, et al. Large-scale fabrication of three-
                 toward structural color palettes for security materials[J].  Chemistry   dimensional ordered polymer films with strong structure colors and
                 of Materials, 2013, 25(13): 2684-2690.            robust mechanical properties[J]. Journal of Materials  Chemistry,
            [13]  LIN Y S, HUNG  Y,  LIN H  Y,  et al. Photonic crystals from   2012, 22(16): 8069-8075.
                 monodisperse lanthanide-hydroxide-at-silica  core/shell colloidal   [25]  ECHEVERRI M, PATIL A, XIAO M,  et al.  Developing
                 spheres[J]. Advanced Materials, 2007, 19(4): 577-580.     noniridescent structural color on flexible substrates with  high
            [14]  YANG D P, YE S Y, GE J P. Solvent wrapped metastable colloidal   bending resistance[J]. ACS Applied Materials & Interfaces, 2019,
                 crystals: Highly mutable colloidal assemblies sensitive to weak   11(23): 21159-21165.
                 external disturbance[J]. Journal of the American Chemical Society,   [26]  LIU P M, CHEN  J L,  ZHANG Z X,  et al.  Bio-inspired robust
                 2013, 135(49): 18370-18376.                       non-iridescent structural color with self-adhesive amorphous
            [15]  HAN M G, HEO C J, SHIM H, et al. Structural color manipulation   colloidal particle arrays[J]. Nanoscale, 2018, 10(8): 3673-3679.
                 using  tunable photonic crystals with enhanced switching   [27]  WANG J X,  WEN Y Q,  GE H L, et al. Simple fabrication of full
                 reliability[J]. Advanced Optical Materials, 2014, 2(6): 535-541.     color colloidal crystal films with tough mechanical strength[J].
            [16]  FURUMI S. Self-assembled organic and polymer photonic crystals   Macromolecular Chemistry and Physics, 2006, 207(6): 596-604.
                 for laser applications[J]. Polymer Journal, 2013, 45(6): 579-593.     [28]  MENG Y, LIU F F, UMAIR M M,  et al.  Patterned and iridescent
            [17]  KIM J H, MOON J H, LEE S Y, et al. Biologically inspired humidity   plastics with 3D inverse opal structure for anticounterfeiting of the
                 sensor based  on three-dimensional photonic crystals[J].  Applied   banknotes[J]. Advanced Optical Materials, 2018, 6(8): 1701351.
                 Physics Letters, 2010, 97(10): 103701.        [29]  BAZIN G,  ZHU X X. Crystalline colloidal arrays from the
            [18]  WANG Z Y, ZHANG J H, WANG Z H, et al. Biochemical-to-optical   self-assembly of polymer  microspheres[J]. Progress in Polymer
                 signal transduction by pH sensitive organic-inorganic hybrid Bragg   Science, 2013, 38(2): 406-419.
                 stacks with a full color display[J]. Journal of Materials Chemistry C,   [30]  WU J, NIU W B, ZHANG S F,  et al. A flexible and robust
                 2013, 1(5): 977-983.                              dual-network supramolecular elastic film with solvent resistance and
            [19]  LUO  Y X, ZHANG J F, SUN A H,  et al.  Electric field induced   brilliant structural colors[J]. New Journal of Chemistry, 2019, 43(29):
                 structural color  changes of SiO 2@TiO 2 core-shell colloidal   11517-11523.
                 suspensions[J]. Journal of Materials  Chemistry C, 2014, 2(11):   [31]  FUDOUZI H. Fabricating high-quality opal films with uniform
                 1990-1994.                                        structure over a large area[J]. Journal of Colloid and Interface
            [20]  FUDOUZI H, XIA Y N. Colloidal crystals with tunable colors and   Science, 2004, 275(1): 277-283.
                 their use as photonic papers[J]. Langmuir, 2003, 19(23): 9653-1960.     [32]  LIU F F, ZHANG  S F, JIN X,  et al. Thermal-responsive  photonic
            [21]  JIANG P, MCFARLAND M J. Large-scale fabrication of wafer-size   crystal with function of color switch based on thermochromic
                 colloidal crystals, macroporous  polymers and nanocomposites by   system[J].  ACS Applied Materials  & Interfaces, 2019, 11(42):
                 spin-coating[J]. Journal of the American Chemical Society, 2004,   39125-39131.
   100   101   102   103   104   105   106   107   108   109   110