Page 112 - 《精细化工》2023年第8期
P. 112

·1726·                            精细化工   FINE CHEMICALS                                 第 40 卷

            中固定化琼胶酶颗粒回收不完全,导致酶活降低;                                 α-neoagarobiose hydrolase for enhancing the production of  3,6-
                                                                   anhydro-L-galactose[J]. Journal of Agricultural and Food Chemistry,
            另一方面是循环过程中酶从载体上脱落、失活或结                                 2018, 66(27): 7087-7095.
            构变性等所致。如何改进固定过程,减少酶的脱落,                            [10]  XIE W, HUANG  M. Fabrication of immobilized Candida rugosa
                                                                   lipase on magnetic Fe 3O 4-poly(glycidyl methacrylate-co-methacrylic
            使琼胶酶的固定更牢固以及如何优化回收过程,减                                 acid) composite as an efficient and recyclable biocatalyst for enzymatic
            少固定化酶颗粒的损失等,是今后研究的重点。                                  production of biodiesel[J]. Renewable Energy, 2020, 158: 474-486.
                                                               [11]  GUO J M (郭姣梅), HAO J H (郝建华), LI X H (李晓涵),  et al.
                                                                   Preparation of aminosilanized magnetic nanoparticles and immobilization
            3   结论                                                 of cyclodextrin glucosyltransferase[J]. Journal of Functional Materials
                                                                   (功能材料), 2020, 51(7): 7190-7195.
                                                               [12]  BOURKAIB M C, GAUDIN P, VIBERT F, et al. APTES modified
                (1)利用 APTES 对磁性复合材料进行功能化改
                                                                   SBA15 and meso-macro silica  materials for the immobilization of
            性用于固定化琼胶酶。通过 SEM 观察到载体材料表                              aminoacylases from Streptomyces ambofaciens[J]. Microporous and
                                                                   Mesoporous Materials, 2021, 323: 111226.
            面光滑,而固定化琼胶酶因酶的附着表面粗糙。固定                            [13]  CAO X, XU H, LI F, et al. One-step direct transesterification of wet
            化琼胶酶的 FTIR 分 析表明,存在琼胶酶和                                yeast for biodiesel  production catalyzed by magnetic nanoparticle-
                                                                   immobilized lipase[J]. Renewable Energy, 2021, 171: 11-21.
            Fe 3O 4@SiO 2-NH 2 的特征峰。VSM 测定固定化琼胶酶               [14]  FANG G, CHEN H, ZHANG Y, et al. Immobilization of pectinase
            的磁化饱和强度为 42.8 emu/g,具有较高的磁响应性。                         onto Fe 3O 4@SiO 2-NH 2 and its activity and stability[J]. International
                                                                   Journal of Biological Macromolecules, 2016, 88: 189-195.
                (2)通过条件实验得到优化的固定条件为:加                          [15]  MANSOUR A  M, IBRAHIM R S, AZAB A A.  Structure,
            酶量为 7 mL,戊二醛加入量为 4 mL,交联时间 2 h,                        morphology, optical and  magnetic studies of Fe 3O 4-doped CdS
                                                                   nanocomposite[J]. Journal of Materials Science: Materials in
            固定时间 2 h,在该条件下,酶活回收率为 67.74%。                          Electronics, 2022,33:10251-10258.
                (3)相比于游离琼胶酶,固定化形成的共价键                          [16]  ASLANI E, ABRI A, PAZHANG M. Immobilization of trypsin onto
                                                                   Fe 3O 4@SiO 2-NH 2 and study of its activity and stability[J]. Colloids
            以及载体材料表面特殊性质造就的良性微环境使得                                 and Surfaces B: Biointerfaces, 2018, 170: 553-562.
            固定化琼胶酶的热稳定性和 pH 稳定性显著提高。                           [17]  MIAO C, YANG  L, WANG  Z,  et al. Lipase immobilization on
                                                                   amino-silane modified superparamagnetic Fe 3O 4 nanoparticles as
                (4)固定化琼胶酶在第 7 次使用后相对活性为                            biocatalyst for biodiesel production[J]. Fuel, 2018, 224: 774-782.
                                                               [18]  BRADFORD M M. A rapid and sensitive method for the quantitation
            40.41%,具有重复利用性。
                                                                   of microgram quantities of protein utilizing the principle of protein-
                 基于氨基硅烷功能化磁性材料固定化琼胶酶是                              dye binding[J]. Analytical Biochemistry, 1976, 72(1): 248-254.
                                                               [19]  ZHANG X W (张曦文), WU L (伍菱), TONG F J (童风景), et al.
            可行的,且具有较好的酶活回收率、热稳定性、pH                                Effects of storage temperature and humidity on enzyme activities and
            稳定性及重复利用性等,可为今后工业化利用琼胶                                 strength of agar gel in brown alga gracilaria[J]. Fisheries Science (水
                                                                   产科学), 2020, 39(6): 880-886.
            酶提供一定的理论依据。                                        [20]  LI C (李驰), LI C S (李春生), YANG X Q (杨贤庆), et al. Isolation
                                                                   and identification of agarase-producing vibrio fluvialis  for agarase
            参考文献:                                                  preparation and purification[J]. Food and Fermentation Industries (食
                                                                   品与发酵工业), 2020, 46(7): 35-42.
            [1]  XIANG  Y  (相悦), SUN C F (孙承锋), LI L H (李来好), et al. Effect   [21]  ARIAEENEJAD  S,  MOTAMEDI  E,  HOSSEINI  S  G.
                 of agaric oligosaccharides and EGCG on the freshness and protein   Immobilization of enzyme  cocktails on dopamine functionalized
                 biochemical properties of ice-frozen fillets of perch[J]. Journal of   magnetic cellulose nanocrystals to enhance sugar bioconversion: A
                 Fisheries of China (水产学报), 2021,45(7): 1007-1020.
                                                                   biomass reusing loop[J]. Carbohydrate Polymers, 2021, 256: 117511.
            [2]   ZHANG X, AWEYA J J, HUANG Z, et al. In vitro fermentation of   [22]  ZHANG Y,  ZHU  L, WU G,  et al.  A novel immobilized enzyme
                 gracilaria lemaneiformis sulfated polysaccharides and its agaro-   enhances the conversion of  phosphatidylserine in two-phase system[J].
                 oligosaccharides by human fecal inocula and its impact on microbiota[J].   Biochemical Engineering Journal, 2021, 172: 108035.
                 Carbohydrate Polymers, 2020, 234: 115894.     [23]  DE OLIVEIRA R L, DA SILVA  M F, DA SILVA S P,  et al.
            [3]   LI Q (李倩), YANG R (杨锐), CHEN H M (陈海敏), et al. Effect of   Fructo-oligosaccharides production  by an  Aspergillus aculeatus
                 oligoagars on the growth and quality of okar[J]. Journal of Nuclear   commercial enzyme preparation with fructosyltransferase  activity
                 Agricultural Sciences (核农学报), 2019, 33(7): 1465-1471.   covalently immobilized on Fe 3O 4-chitosan-magnetic nanoparticles[J].
            [4]   LIN Z K (林志魁), ZHAO S H (赵守辉), XU Z F (许紫芬), et al.   International Journal of Biological Macromolecules, 2020, 150: 922-
                 Preparation of a new  agar oligosaccharide facial  mask essence[J].   929.
                 Guangdong Chemical Industry (广东化工), 2022, 49(8): 77-80.
            [5]   LIU X (刘雪), CHEN Y H (陈艳红), JIANG Z D (姜泽东), et al.   [24]  LIAO J, HAN S, LI X, et al. Co-immobilization of two-component
                                                                   hydroxylase monooxygenase by functionalized magnetic nanoparticles
                 Characterization of a neoagarobiose-producing and thermostable   for preserving high catalytic activity and enhancing enzyme stabilty[J].
                 β-agarase from Agarivorans sp.AL1 and antioxidant activity of the   International Journal of Biological Macromolecules, 2020, 164:
                 enzymatic hydrolysates[J]. Modern Food Science  and  Technology   3163-3170.
                 (现代食品科技), 2021, 37(5): 82-90.                 [25]  WU E, LI Y, HUANG Q, et al. Laccase immobilization on amino-
            [6]   ZOU  Y, FU X, LIU N,  et al. The synergistic  anti-inflammatory   functionalized magnetic metal organic framework for phenolic compound
                 activities of agaro-oligosaccharides with different degrees  of   removal[J]. Chemosphere, 2019, 233: 327-335.
                 polymerization[J]. Journal of Applied Phycology, 2019, 31(4): 2547-   [26]  KHAN M,  HUSAIN Q, BUSHRA R. Immobilization  of  β-
                 2558.                                             galactosidase on surface modified cobalt/multiwalled carbon nanotube
            [7]   XIAO Q,  LIU C,  NI H,  et al.  β-Agarase immobilized on tannic   nanocomposite improves enzyme stability and resistance to inhibitor[J].
                 acid-modified Fe 3O 4 nanoparticles for efficient preparation of bioactive   International Journal of Biological Macromolecules, 2017, 105: 693-
                 neoagaro-oligosaccharide[J]. Food Chemistry, 2019, 272: 586-595.
                                                                   701.
            [8]   ZHANG  L, GUO X, SONG Y,  et al. Bioadhesive immobilize   [27]  RODRIGUES R C, BERENGUER-MURCIA Á,  CARBALLARES
                 agarase on magnetic ferriferous by polydopamine[J]. Materials   D,  et al. Stabilization  of enzymes  via immobilization:  Multipoint
                 Science and Engineering: C, 2018, 93: 218-225.    covalent attachment  and other  stabilization strategies[J]. Biotechnology
            [9]   WANG Q, SUN J, LIU Z, et al. Coimmobilization of β-agarase and
                                                                   Advances, 2021, 52: 107821.
   107   108   109   110   111   112   113   114   115   116   117