Page 89 - 《精细化工》2023年第8期
P. 89
第 8 期 汤 朋,等: NIPAM 改性 PEDOT:PSS 导电聚合物的制备及在电致变色器件中的应用 ·1703·
[2] ALMARRI A H. Improving the electrochromic properties of the photodiode with functional interlayer[C]//Infrared Sensors, Devices,
composite films for electrochromic device[J]. Ionics, 2022, 28(1): and Applications Ⅻ. SPIE (国际光学工程学会), 2022, 12234:
407-414. 122-126.
[3] MA X H (马小涵), HU Y P (胡云平), YAN Y P (言驿鹏), et al. [18] PARK S G, RHEE C, JADHAV D A, et al. Tailoring a highly
Synthesis of PEDOT: PSS and preparation of free-standing conductive conductive and super-hydrophilic electrode for biocatalytic performance
film[J]. Fine Chemicals (精细化工), 2020, 37(5): 906-911. of microbial electrolysis cells[J]. Science of the Total Environment,
[4] ALMARRI A H. Enhanced electrochromic properties of anatase TiO 2 2022: 159105.
for flexible electrochromic device[J]. Ionics, 2022, 28(9): 4435-4444. [19] ZHAO Q, WANG J K, AI X H, et al. Three-dimensional knotting of
[5] ALVES R, FIDALGO M A, CAMPOS A L, et al. Solid polymer W 17O 47@PEDOT: PSS nanowires enables high-performance flexible
electrolytes based on gellan gum and ionic liquid for sustainable cathode for dual-functional electrochromic and electrochemical
electrochromic devices[J]. ACS Applied Materials & Interfaces, device[J]. Infomat, 2022, 4(4): e12298.
2022, 14(13): 15494-15503. [20] DO M, PARK C, BAE S, et al. Design of highly stable and
[6] XUE R, LIU Y, NING L, et al. Fabrication of flexible electrochromic solution-processable electrochromic devices based on PEDOT: PSS[J].
devices with degradable and fully recyclable features[J]. ACS Organic Electronics, 2021, 93: 106106.
Biomaterials Science & Engineering, 2022, 8(3): 1320-1328. [21] WANG M H (王明晖), ZONG Y F (宗艳凤), SHI G F (史高飞),
[7] BROOKE R, PETSAGKOURAKIS I, WIJERATNE K, et al. et al. Influence of different doping agent on structure and properties
Electrochromic displays manufactured by a combination of vapor of PEDOT:PSS films[J]. Chinese Journal of Liquid Crystals and
phase polymerization and screen printing[J]. Advanced Materials Displays (液晶与显示), 2013, 28(6): 823-827.
Technologies, 2022: 2200054. [22] CAI W, MA X, GUO J, et al. Preparation and performance of a
[8] MARKOULIDIS F, DAWE A, LEKAKOU C. Electrochemical transparent poly(3,4-thylene dioxythiophene)-poly(p-styrene sulfonate-
double-layer capacitors with lithium-ion electrolyte and electrode co-acrylic acid sodium) film with a high stability and water
coatings with PEDOT: PSS binder[J]. Journal of Applied Electrochemistry, resistance[J]. Journal of Applied Polymer Science, 2017, 134(31):
2021, 51(3): 373-385. 45163-45170.
[9] HUANG H, TIAN J, XU L S, et al. High-performance electrochromic [23] LEE Y Y, KANG H Y, GWON S H, et al. A strain-insensitive
device based on WO 3/NiO complementary characteristic and highly stretchable electronic conductor: PEDOT:PSS/acrylamide organogels
porous structure[J]. Nanoscience and Nanotechnology Letters, 2013, [J]. Advanced Materials, 2016, 28(8): 1636-1643.
5(1): 78-83. [24] PARK H, LEE S H, KIM F S, et al. Enhanced thermoelectric
[10] GEORG A, GEORG A, GRAF W, et al. Switchable windows with properties of PEDOT:PSS nanofilms by a chemical dedoping
tungsten oxide[J]. Vacuum, 2008, 82(7): 730-735. process[J]. Journal of Materials Chemistry A, 2014, 2(18): 6532-
[11] YOU Y, WU X L, YIN Y X, et al. High-quality prussian blue crystals 6539.
as superior cathode materials for room-temperature sodium-ion [25] IM S, PARK C, CHO W, et al. Synthesis of solution-stable
batteries[J]. Energy & Environmental Science: EES, 2014, 7(5): PEDOT-coated sulfonated polystyrene copolymer PEDOT:P(SS-
1643-1647. co-St) particles for all-organic NIR-shielding films[J]. Coatings,
[12] KIM Y, SHIN H, HAN M, et al. Energy saving electrochromic 2019, 9(3): 151-161.
polymer windows with a highly transparent charge-balancing [26] HAN Y K, YIH J N, CHANG M Y, et al. Facile synthesis of
layer[J]. Advanced Functional Materials, 2017, 27(31): 1701192- aqueous-dispersible nano-PEDOT:PSS-co-MA core/shell colloids
1701199. through spray emulsion polymerization[J]. Macromolecular
[13] HE J, MUKHERJEE S, ZHU X, et al. Highly transparent Chemistry and Physics, 2010, 212(4): 361-366.
crosslinkable radical copolymer thin film as the ion storage layer in [27] PARK H, LEE S H, KIM F S, et al. Enhanced thermoelectric
organic electrochromic devices[J]. ACS Applied Materials & properties of PEDOT:PSS nanofilms by a chemical dedoping
Interfaces, 2018, 10(22): 18956-18963. process[J]. Journal of Materials Chemistry A, 2014, 2(18): 6532-6539.
[14] KARYAKIN A A. Prussian blue and its analogues: Electrochemistry [28] DU Y (都妍), WU Y J (武亚君), ZHANG Y (张元), et al. Dielectric
and analytical applications[J]. Electroanalysis, 2001, 13(10): 813-819. properties of DMSO-doped-PEDOT:PSS in the THz range[J].
[15] TAHTALI G, HAS Z, DOYRANLI C, et al. Solution processable Chinese Journal of Radio Science (电波科学学报), 2019, 34(1):
neutral state colourless electrochromic devices: Effect of the layer 133-138.
thickness on the electrochromic performance[J]. Journal of Materials [29] KIM Y, KIM J, LEE H, et al. Synthesis of stretchable,
Chemistry C, 2016, 4(42): 10090-10094. environmentally stable, conducting polymer PEDOT using a
[16] LV X, YANG Y, XU L, et al. An all-solid-state polymeric modified acid template random copolymer[J]. Macromolecular
electrochromic device based on two well-matched electrodes with Chemistry and Physics, 2020, 221(5): 1900465.
fast switching time and excellent cycling stability[J]. Reactive and [30] TAO Y J, ZHANG K, ZHANG Z Y, et al. Synthesis, characterizations
Functional Polymers, 2020, 156: 104737-104744. and electrochromic properties of polymers based on functionalized
[17] LEE Y, JANG H, CHOI H, et al. Self-powered near-infrared organic anthracene[J]. Chemical Engineering Journal, 2016, 293: 34-43.