Page 215 - 《精细化工》2023年第9期
P. 215

第 9 期                    邵   磊,等:  改性黄铁矿为电子供体的生物反硝化脱氮性能                                 ·2063·


                 donors[J]. Environmental Science (环境科学), 2013, 34(5): 1835-   denitrification[J]. Water Science  and Technology, 2013, 67(12):
                 1844.                                             2761-2767.
            [23]  WANG D G (王大刚), FAN L R (范力仁), WANG S P (王圣平), et   [31]  MA J, WU H, WANG Y, et al. Material inter-recycling for advanced
                 al. Electrochemical properties of pyrite as lithium battery cathode   nitrogen and residual COD removal from bio-treated coking wastewater
                 materials[J]. Materials Reports (材料导报), 2012, 26(18): 93-96.   through autotrophic denitrification[J]. Bioresource Technology, 2019,
            [24]  MONTORO L A, ROSOLEN J M. Gelatin/DMSO: A new approach   289: 121616.
                 to enhancing the performance of a pyrite electrode in a lithium   [32]  WANG W H (王维红), BAO W T (包文婷), WANG Y S (王燕杉).
                 battery[J]. Solid State Ionics, 2003, 159(3/4): 233-240.   Effect of particle size on the performance of aerobic granular sludge
            [25]  LI J Z (李搛倬),  CHUAN X Y (传秀云), YANG  Y (杨扬),  et al.   in tomato sauce wastewater[J]. Fine Chemicals (精细化工), 2021,
                 Synthesis and energy storage application of pyrite FeS 2[J]. Materials   38(2): 380-386.
                 Reports (材料导报), 2022, 36(1): 16-28.           [33]  ALBINA P, DURBAN N, BERTRON A, et al. Influence of hydrogen
            [26]  LIU T, HU Y, CHEN  N,  et al. High redox potential promotes   electron donor, alkaline pH, and high nitrate concentrations on
                 oxidation of pyrite under neutral conditions: Implications for optimizing   microbial denitrification: A review[J]. International Journal of
                 pyrite autotrophic denitrification[J]. Journal of Hazardous Materials,   Molecular Sciences, 2019, 20(20): 5163.
                 2021, 416: 125844.                            [34]  FAJARDO C,  MORA  M, FEMANDEZ I, et  al.  Cross effect of
            [27]  DI C F, PIROZZI F, LENS P N L,  et al.  Electron donors  for   temperature, pH and free ammonia  on autotrophic denitrification
                 autotrophic denitrification[J]. Chemical Engineering Journal, 2019,   process with sulphide as electron donor[J]. Chemosphere, 2014, 97:
                 362: 922-937.                                     10-15.
            [28]  ZHOU Q, JIA L, WU W, et al. Introducing PHBV and controlling the   [35]  OH S  E, KIM  K  S, CHOI H C,  et al.  Kinetics and physiological
                 pyrite sizes achieved the pyrite-based mixotrophic denitrification   characteristics of autotrophic dentrification by denitrifying sulfur
                 under natural aerobic conditions: Low sulfate production and functional   bacteria[J]. Water Science and Technology, 2000, 42(3/4): 59-68.
                 microbe interaction[J]. Journal of Cleaner Production, 2022, 366:   [36]  KORNIG A, LI L. Autotrophic denitrification of high-salinity wastewater
                 132986.                                           using elemental sulfur: Batch tests[J]. Water Environment Research,
            [29]  LI Y, GUO J, LI H, et al. Effect of dissolved oxygen on simultaneous   2004, 76(1): 37-46.
                 removal of ammonia, nitrate and phosphorus via biological aerated   [37]  KRLLY D P, WOOD A P. Confirmation of Thiobacillus denitrificans
                 filter with sulfur  and pyrite as composite fillers[J]. Bioresource   as a species of the genus  Thiobacillus, in the beta-subclass of the
                 Technology, 2020, 296: 122340.                    Proteobacteria, with strain NCIMB 9548 as the type strain[J].
            [30]  LI R, NIU J, ZHAN X, et al. Simultaneous removal of nitrogen and   International Journal of Systematic and Evolutionary Microbiology,
                 phosphorus from wastewater by means of  FeS-based autotrophic   2000, 50(2): 547-550.




            (上接第 1984 页)                                       [54]  XING Y C. Synthesis and electrochemical characterization of uniformly-
            [49]  WU R L (吴熔琳), SHAO Z Z (邵铮铮), CHANG S L (常胜利), et al.   dispersed high loading Pt nanoparticles on sonochemically-treated
                 Raman spectroscopy of multi-walled carbon nanotubes with different   carbon nanotubes[J]. Journal of Physical  Chemistry B, 2004, 108:
                 parameters[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分  19255-19259.
                 析), 2014, 34(4): 982-985.                     [55]  ZHOU C M (周春梅). Preparation and properties of Pt based anode
            [50]  JIANG Q, JIANG L H, HOU H Y, et al. Promoting effect of Ni in   catalyst improved by ruthenium/manganese oxide for direct methanol
                 PtNi bimetallic electrocatalysts for the methanol oxidation reaction in   fuel cell[D]. Guangzhou: South China University of Technology (华
                 alkaline media: Experimental and density functional theory studies   南理工大学), 2010.
                 [J]. Journal of Physical Chemistry C, 2010, 114(46): 19714-19722.   [56]  HUANG W J, WANG H T, ZHOU J G,  et al. Highly active and
            [51]  ZHAN F W, BIAN T, ZHAO W G, et al. Facile synthesis of Pd-Pt   durable methanol oxidation electrocatalyst based on the synergy of
                 alloy concave nanocubes with high-index facets as electrocatalysts   platinum-nickel hydroxide-graphene[J]. Nature Communications,
                 for methanol oxidation[J]. Crystengcomm, 2014, 16(12): 2411-2416.   2015, 6(1): 10035.
            [52]  HU Y J, WU P, YIN Y J, et al. Effects of structure, composition, and   [57]  YIN H J, ZHAO S L, ZHAO K, et al. Ultrathin platinum nanowires
                 carbon support properties on the electrocatalytic  activity of   grown on single-layered nickel hydroxide with high hydrogen
                 Pt-Ni-graphene nanocatalysts for the methanol oxidation[J]. Applied   evolution activity[J]. Nature Communications, 2015, 6: 6430.
                 Catalysis B: Environmental, 2012, 111: 208-217.   [58]  CARPENTER M K,  MOYLAN  T E,  KUKREJA R S,  et al.
            [53]  CUI C H, GAN L, LI H H,  et al.  Octahedral PtNi nanoparticle   Solvothermal synthesis of  platinum alloy nanoparticles for oxygen
                 catalysts: Exceptional oxygen reduction activity by tuning the alloy   reduction electrocatalysis[J]. Journal of the American  Chemical
                 particle surface composition[J]. Nano Letters, 2012, 12(11): 5885-5889.   Society, 2012, 134(20): 8535-8542.




            (上接第 1993 页)                                           51(10): 105111.
            [35]  SHAH S A, SHEN X, XIE M,  et al. Nickel@nitrogen-doped   [37]  TUGUHIRO T, KATAOKA N, TANAKA H, et al. XPS study from a
                 carbon@MoS 2 nanosheets: An efficient electrocatalyst for hydrogen   clean surface of Al 2O 3 single crystals[J]. Procedia engineering, 2017,
                 evolution reaction[J]. Small, 2019, 15(9): 1804545.   216: 175-181.
            [36]  USMAN M, ARSHAD M, SUVANAM S S,  et al. Influence of   [38]  LIU H, DING  N, WEI J N,  et al. Oxidative esterification of
                 annealing environment on the ALD-Al 2O 3/4H-SiC interface studied   5-hydroxymethylfurfural with an N-doped carbon-supported CoCu
                 through XPS[J]. Journal of Physics D: Applied Physics, 2018,   bimetallic catalyst[J]. ChemSusChem, 2020, 13(16): 4151-4158.
   210   211   212   213   214   215   216   217   218   219   220