Page 163 - 201810
P. 163
第 10 期 叶仲斌,等: 注入水成分对油藏中液固界面 Zeta 电位的影响 ·1771·
后减小的趋势。当 pH 分别为 3、5、6、7、9 时,相 Abuja Nigeria, 2011.
[4] Nasralla R, Alotaibi M, Nasr-El-Din H. Efficiency of oil recovery by
应的原油脱附量分别为 3.87、4.01、4.38、4.10、3.66 mg
low salinity water flooding in sandstone reservoirs[R]. SPE Western
和 3.41、4.16、5.33、4.68、3.53 mg。主要原因为, North American Region Meeting, Anchorage, Alaska, USA, 2011.
+
在酸性条件下,pH 的增加将引起溶液中 H 浓度减 [5] Mostafa Lashkarbolooki, Shahab Ayatollahi, Masoud Riazi. Effect of
salinity, resin, and asphaltene on the surface properties of acidic
+
少,从而使得 H 对原油和岩石表面扩散层的压缩作 crude oil/smart water/rock system[J].Energy Fuels, 2014, 41(2):
+
用减弱,H 中和表面负电荷能力减弱、净剩负电荷 55-61.
[6] Vledder P, Gonzalez I E, Fonseca J C C, et al. Low salinity water
量增加,油膜与岩石间的静电排斥力增加,最终导 flooding: proof of wettability alteration on a field wide scale[R]. SPE
致油膜的脱附能力增强。在碱性条件下,当 pH 增 Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, 2010:
2+
2+
2+
加时,Ca 、Mg 的水解程度加大,相对于 Ca 、 24-28.
[7] Saeid Khorsandi, Changhe Qiao, Russell T Johns. Displacement
+
2+
Mg 而言,水解生成的一羟基络合物 Ca(OH) 和 efficiency for low salinity polymer flooding including wettability
+
Mg(OH) 对表面的负电荷具有更强的中和能力,导 alterationns[R]. SPE Improved oil Recovery ,Oklahoma, USA, 2016.
[8] Emad W, Shalabi, Sepehrnoori, et al. Geochemical interpretation of
致岩石、原油表面的净负电荷量进一步减少、负电 low-salinity-water injection in carbonate oil reservoirs[J]. Energy
性减弱,则油膜与岩石间的静电排斥力减小,最终 Fuels, 2014, 38(1): 12-16.
[9] Emadi A, Sohrabi M. Visual investigation of oil recovery by low
导致油膜的脱附能力减弱。 salinity water injection: formation of water micro-dispersions and
wettability alteration[J]. Analyst, 2013, 128(6): 773-778.
3 结论 [10] Tor Austad, Alireza Rezaei Doust, Tina Puntervold. Chemical
mechanism of low salinity water flooding in sandstone reservoirs[R].
Workshop & Symposium in Aberdeen, Scotland, 2010.
通过考察不同离子组成和 pH 的低矿化度水岩
[11] Petroleum Instrumentation Standardization Technical Committee(石
石和原油界面的 Zeta 电位的影响发现:随着溶液中 油仪器仪表标准化技术委员会).General specifications for core
离子质量浓度的降低,原油和岩石界面 Zeta 电位的 flowing system:SY/T 6703—2007[S]. 2007.
[12] Duan Ming (段明), Tao Jun (陶俊), Fang Shen (方申), et al. Effect
绝对值增大,其负电性更强;二价离子比一价离子 of pH on the stability of crude oil emulsion[J]. Chemical progress (化
+
对界面带电性影响更大;Na 溶液所对应的界面 Zeta 工进展), 2015, 34(7): 1853-1857.
[13] Liu Jinhe (刘金河), Wang Zongxian (王宗贤), Fang Xiaowei (房晓
2+
2+
电位值随着 pH 的增加而减小,Ca 、Mg 溶液所对 伟), et al. Effect of different structure demulsifiers on surface
应的界面 Zeta 电位值随着 pH 的增加先减小后增大。 membrane of crude oil and its acid-base components[J]. Journal of
Petroleum Science and Technology, 2012, 28(4): 646-651.
由于岩石和原油同时带有负电,存在相互排斥作用。
[14] Zhou Xia (周霞), Yue Chuanzan (越传赞). Discussion on Zeta
当向储层中注入低矿化度水时,原油和岩石界面的 potential of sandstone surface[J]. Journal of Xian Shiyou University
Zeta 电位绝对值均会增加,其负电性相对增强,原 (西安石油大学学报), 2009, 24(6): 49-51, 111.
[15] Qian Jianxing (钱健行). Design of wetting angle measuring device
油与岩石之间的排斥作用增强,不利于原油在岩石 and its application[D]. Shenyang:Northeastern University (东北大
表面吸附,从而达到提高洗油效率的效果。 学), 2014.
[16] Li Zhanbin (李占彬), Tan Hong (谭红), Xie Feng (谢锋), et al.
综合分析不同离子、不同质量浓度和不同 pH Determination of sodium dodecyl benzenesulfonate by UV
的溶液所对应的 Zeta 电位值、润湿接触角和原油脱 spectrophotometer for the identification of water[J]. Journal of
Analytical Science (分析测试学报), 2012, 31(4): 379-382.
附量可以看出,三者之间的变化存在一定的相关性。
[17] Liu Jianjun, Xu Zhenghe, Jacob Masliyah. Processability of oil sand
岩石和溶液界面所带 Zeta 电位绝对值越大,原油和 ores in alberta[J]. Energy Fuels, 2005, 19(5):2056-2063.
岩石表面的静电排斥力越大,不利于原油在岩石表 [18] Li H, Zhou Z A, Xu Z, et al. Role of acidified sodium silicate in low
temperature bitumen extraction from poor-processing oil sand
面吸附;因此其润湿角就会减小而偏向于水湿。原 ores[J]. Industrial & Engineering Chemistry Research, 2005, 44(13):
油和岩石之间排斥力的增加,岩石表面润湿角的减 4753-4761.
[19] Kasongo T, Zhou Z, Xu Z, et al. Effect of clays and calcium ions on
少,都会增加低矿化度水驱过程中油膜脱附量,从 bitumen extraction from athabasca oil sands using flotation[J].
而提高原油的采收率。 Canadian Journal of Chemical Engineering, 2016, 78(4): 674-681.
[20] Jan Vinogradov, Matthew D Jackson. Zeta potential in intact natural
参考文献: sandstones at elevated temperatures[J]. Research Gate, 2014, 12:
996-1002.
[1] Farzaneh Moeini, Abdolhossein HS, MH Ghazanfari, et al. Toward [21] Brady P V, Morrow N R, Fogden A, et al. Electrostatics and the low
mechanistic understanding of heavy crude oil/brine interfacial salinity effectin sandstone reservoirs[J]. Energy & Fuels, 2015, 112:
tension: The roles of salinity, temperature and pressure[J]. Fluid 29-34.
Phase Equilibria, 2014, 375: 191-200. [22] Chen Linzhang (陈琳璋), Hou Qinglin (侯清麟), Yin Ruiming (银锐
[2] Ligthelm D, Gronsveld J, Hofman J, et al. Novel waterflooding 明), et al. Study on the mechanism of calcium ion influence on
strategy by manipulation of injection brine composition[R]. Europec sodium dodecyl sulfonate capture[J]. Journal of Hunan University of
Conference and Exhibition, Amsterdam, 2009. Technology (湖南科技大学学报), 2012, 26(6): 8-12.
[3] Idowu J, Somerville J, Adebari D, et al. Effect of salinity changes of [23] Umer Farooq a, Johan Sjoblom a, Gisle Oye, et al. Desorption of
the injected water on water flooding performance in carbonate asphaltenes from silica-coated quartz crystal surfaces in low saline
reservoirs[R]. Nigeria Annual International Conference and Exhibition, aqueous solutions[J]. Research Gate, 2015, 8: 1072-1080.