Page 50 - 201810
P. 50
·1658· 精细化工 FINE CHEMICALS 第 35 卷
表 2 不同 EPGO 用量的 EPGO/WPU 复合膜的耐磨性能 进展), 2015, 34(2): 463-469.
Table 2 Wear-resistance properties of EPGO/WPU composite [4] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant
films with different EPGO contents defines visual transparency of graphene[J]. Science, 2008, 320(5881):
w(EPGO)/% 1308.
[5] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties
0 0.4 0.6 0.8 1.0 and intrinsic strength of monolayer graphene[J]. Science, 2008,
磨损前后质量损失/mg 2.5 1.7 1.1 0.2 0.4 321(5887): 385-388.
[6] Geng Y, Wang S J, Ki J K. Preparation of graphite nanoplatelets and
由表 2 可以看出,纯水性聚氨酯膜耐磨性能最 grapheme sheets[J]. Journal of Colloid and Interface Science, 2009,
336(2): 592-598.
差,随着 EPGO 用量的增加,耐磨性能也随之增加, [7] Xu H, Yan J, She X, et al. Graphene-analogue carbon nitride: novel
当添加 EPGO 用量达到 0.8%时,砂轮转 200 圈,磨 exfoliation synthesis and its application in photo catalysis and photo
2+
electrochemical selective detection of trace amount of Cu [J].
损前后质量损失对成膜几乎没有损伤,由此可知,
Nanoscale, 2014, 6(3): 1406-1415.
EPGO 的加入有助于提高水性聚氨酯胶膜耐磨性 [8] Liang Tongxiang (梁彤祥), Liu Juan (刘娟), Wang Chen (王晨).
能。结合机理分析产生这种性能的主要原因是 Electronic structure of grapheme and its application advances[J].
Materials Engineering (材料工程), 2014, (6): 89-96.
EPGO 加入水性聚氨酯中,成膜后填充了 WPU 材料 [9] Liu M, Zhang R, Chen W. Graphene-supported nanoelectrocatalysts
的内部缺陷,其在 WPU 中均匀分布并与聚氨酯分 for fuel cells: synthesis, properties, and applications[J]. Chemical
子产生交联,减少了应力聚集点,钝化了由于应力 reviews, 2014, 114(10): 5117-5160.
[10] Stankovich S, Piner R D, Chen X,et al. Stable aqueous dispersions
所引起的水性聚氨酯基体裂纹扩展,阻止了进一步 of graphitic nanoplatelets via thereduction of exfoliated graphite
发展成为破坏性裂缝。随着 EPGO 用量的增加,纳 oxide in the presence of poly(sodium4-styrenesulfonate)[J]. J Mater
米材料的比表面积增加,与水性聚氨酯接触的面积 Chem, 2006, 16(2): 155-158.
[11] Rafiee M A. Graphene-based composite materials[D]. Rensselaer
也就增大,当产生力的冲击时可以产生更多的微裂 Polytechnic Institute, 2011.
纹,增加了对于冲击能的吸收效果,减小了破坏这 [12] Kim H, Abdala A A, Macosko C W. Graphene/polymer nanocomposites[J].
Macromolecules, 2010, 43(16): 6515-6530.
些微裂纹的可能性。此外,EPGO 作为纳米填充材
[13] Hirsch A, Englert J M, Hauke F. Wet chemical functionalization of
料的加入,显著提高了胶膜的硬度,也增加了胶膜 graphene[J]. Accounts of Chemical Research, 2013, 46(1): 87-96.
的耐磨性能。 [14] Yang Jianjun (杨建军), Zhang Jian'an (张建安), Wu Qingyun (吴庆
云), et al. New research progress in the modification technology of
waterborne polyurethane resin used for the manufacture of synthetic
3 结论 leather[J]. Fine Chemicals (精细化工), 2013, 30(3): 241-247.
[15] Yang X, Qiu L, Cheng C, et al. Ordered gelation of chemically
(1)利用改进的 Hummers 法制备 GO,通过环 converted graphene for next-generation electroconductive hydrogel
氧氯丙烷跟 GO 上羧基反应制得 EPGO,FTIR 证明 films[J]. Angewandte Chemie International Edition, 2011, 50(32):
7325-7328.
了通过共价改性在 GO 表面引入更多的环氧基团, [16] Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of
XRD 表明环氧改性破坏了 GO 的晶格结构,其结构 graphene nanosheets[J]. Nature nanotechnology, 2008, 3(2): 101-105.
的无序度进一步增大,通过 TEM 进一步验证了实验 [17] Li W, Wen H, Shi Q, et al. Study on immobilization of (+)
γ-lactamase using a new type of epoxy graphene oxide carrier[J].
所制 EPGO 具有纳米尺寸结构。 Process Biochemistry, 2016, 51(2): 270-276.
(2)制备不同 EPGO 添加量的水性聚氨酯胶膜, [18] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J].
Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
随着 EPGO 用量的增加,复合材料的拉伸强度先增
[19] Luo X, Zhang P, Ren J, et al. Preparation and properties of
大后减小,当 EPGO 质量分数达到 0.8%时,复合材 functionalized graphene/waterborne polyurethane composites with
料拉伸强度达到 12.9 MPa,拉伸强度较空白膜提高 highly hydrophobic[J]. Journal of Applied Polymer Science, 2015,
132(23): 1-8.
67.5%,杨氏模量提高 36.4%。 [20] Seifollahi Bazarjani M, Kleebe H J, Müller M M, et al. Nanoporous
(3)随 EPGO 用量的增加可以显著提高胶膜的 silicon oxycarbonitride ceramics derived from polysilazanes in situ
耐磨性。 modified with nickel nanoparticles[J]. Chemistry of Materials, 2011,
23(18): 4112-4123.
[21] Zhang Yu (张玉), Yang Jianjun (杨建军), Wu Qingyun (吴庆云),
参考文献:
et al. Preparation and performance study of reduced silanized-graphene-
[1] Zhou X, Li Y, Fang C, et al. Recent advances in synthesis of oxide /waterborne polyurethane composites[J]. Fine Chemicals (精细
waterborne polyurethane and their application in water-based ink: a 化工), 2016, 33(3): 241-246.
review[J]. Journal of Materials Science & Technology, 2015, 31(7): [22] Liu Zhanqing (刘占清). Synthesis and characterization of novel
708-722. epoxy-modified waterborne polyurethanes and their use in carbon
[2] Zhang Yu (张玉), Yang Jianjun (杨建军), Wu Qingyun (吴庆云), et fiber sizing[D]. Beijing: Beijing University of Chemical
al. Application and research progress of waterborne polyurethane Technology(北京化工大学), 2012.
coatings[J]. Polyurethane Industry (聚氨酯工业), 2015, (2): 6-10. [23] Wang Wusheng (王武生), Zeng Jun (曾俊), Ruan Deli (阮德礼),
[3] Wang Yin (王寅), Fu Heqing (傅和青), Yan Caibin (颜财彬), et al. et al. Film forming mechanism of aqueous polyurethane microgel
Research progress of waterborne polyurethane modified by with epoxy silane as crosslinker[J]. Polymer Materials Science and
nanomaterials[J]. Chemical Industry and Engineering Progress (化工 Engineering (高分子材料科学与工程), 2001, 17(3): 102-105.