Page 58 - 201810
P. 58
·1666· 精细化工 FINE CHEMICALS 第 35 卷
密度为 500 W/kg 下,水系电容器的能量密度为 10500 W/kg 下,其能量密度仍为 51.25 (Wh)/kg。这
9.86 (Wh)/kg。但更引人关注的是组装的有机系电 样的性能要优于商业电容器。因此说,这种方法制备
容器器件的电压窗口为 3.0 V。并且在功率密度为 的氮掺杂纳米级多孔石墨化碳具有优异的储能特性。
图 13 NPGC 材料组装的超级电容器在(a)6 mol/L KOH 和(b)1 mol/L Et 4 NBF 4 -PC 中的 GCD 曲线;(c)NPGC 材
料组装的超级电容器在 6 mol/L KOH 和 1 mol/L Et 4 NBF 4 -PC 中的能量密度随功率密度的变化
Fig. 13 GCD curves of NPGC sample in 6 mol/L KOH (a) and 1 mol/L Et 4 NBF 4 -PC (b) electrolytes, (c) Ragone plots
obtained from the galvanostatic discharge process at different current densities in 6 mol/L KOH and 1 mol/L
NEt 4 BF 4 -PC electrolytes, respectively
3 结论 34(2): 129-133.
[7] Chang B, Yin H, Zhang X, et al. Chemical blowing strategy synthesis
of nitrogen-rich porous graphitized carbon nanosheets: morphology,
(1)本文以价格低廉的生物质——海带为碳 pore structure and supercapacitor application[J]. Chemical
源、三聚氰胺为氮源,通过化学活化法合成出 Engineering Journal, 2017, 312: 191-203.
[8] Li R, Cao A, Zhang Y, et al. Formation of nitrogen-doped
NPGC。 mesoporous graphitic carbon with the help of melamine[J]. ACS
Applied Materials & Interfaces, 2014, 6(23): 20574-20578.
(2)所制得的样品 NPGC,表现出良好的储能
[9] Jeon J W, Sharma R, Meduri P, et al. In situ one-step synthesis of
特性:其比电容最高可达到 267 F/g,且经过 5000 hierarchical nitrogen-doped porous carbon for high-performance
supercapacitors[J]. ACS Applied Materials & Interfaces, 2014, 6(10):
次循环后,NPGC 的比电容仍能保持其初始电容,
7214-7222.
并且其库伦效率保持在 99.9%以上。 [10] Liu Z, Xiao K, Guo H, et al. Nitrogen-doped worm-like graphitized
hierarchical porous carbon designed for enhancing area-normalized
(3)样品 NPGC 优异的储能特性主要归功于 capacitance of electrical double layer supercapacitors[J]. Carbon,
碳源海带的选择。由于海带衍生的碳源具有片层多 2017, 117: 163-173.
[11] Wang X, Liu C G, Neff D, et al. Nitrogen-enriched ordered
孔结构,这种结构在电化学过程中可以有效地促进 mesoporous carbons through direct pyrolysis in ammonia with
电解液和电荷的传递,并且每一片层的 NPGC 相当 enhanced capacitive performance[J]. Journal of Materials Chemistry
A, 2013, 1(27): 7920-7922.
于一个小的电容器,它们串联或并联在一起组合成 [12] Pan Xuchen (潘旭晨), Tang Jing (汤静), Xue Hairong (薛海荣), et
一个大功率的超级电容器, 从而确保 NPGC 的高电 al. Synthesis and electrocatalytic performance of N-doped ordered
mesoporous carbon-Ni nanocomposite[J]. Chinese Journal of
容特性。此外,样品适宜的石墨化程度、高的比表面 Inorganic Chemistry (无机化学学报), 2015, 31(2): 282-290.
积和高含氮量对 NPGC 材料的电化学性能也有贡献。 [13] Andrewsa R, Jacquesa D, Dickeyb E C, et al. Purification and
structural annealing of multiwalled carbon nanotubes at
graphitization temperatures[J]. Carbon, 2001, 39: 1681-1687.
参考文献: [14] Vecera P, Chacon-Torres J C, Pichler T, et al. Precise determination
of graphene functionalization by in situ Raman spectroscopy[J].
[1] Shi N, Li X, Fan T, et al. Biogenic N-I-codoped TiO 2 photocatalyst
derived from kelp for efficient dyedegradation[J]. Energy Nature Communications, 2017, 8: 15192-15200.
Environmental Science, 2011, 4(1): 172-180. [15] Zhang D, Zheng L, Ma Y, et al. Synthesis of nitrogen- and
[2] Chiam S L, Lim H N, Foo C Y, et al. How did nickel cobaltite sulfur-codoped 3D cubic-ordered mesoporous carbon with superior
performance in supercapacitors[J]. ACS Applied Materials &
reinforced carbon microfibre symmetrical supercapacitor fare against Interfaces, 2014, 6(4): 2657-2665.
a commercial supercapacitor[J]. Electrochimica Acta, 2017, 246: [16] Sliwak A, Moyseowicz A, Gryglewicza G. Hydrothermal-assisted
1141-1146. synthesis of an iron nitride-carbon composite as a novel electrode
[3] Liu Y, Peng X. Recent advances of supercapacitors based on two- material for supercapacitors[J]. Journal of Materials Chemistry A,
dimensional materials[J]. Applied Materials Today, 2017, 7: 1-12. 2017, 5(12): 5680-5684.
[4] Yang H, Zhang Y. Characterization of supercapacitor models for [17] Farbos B, Freeman H, Hardcastle T, et al. A time-dependent atomistic
analyzing supercapacitors connected to constant power elements[J]. reconstruction of severe irradiation damage and associated property
Journal of Power Sources, 2016, 312: 165-171. changes in nuclear graphite[J]. Carbon, 2017, 120: 111-120.
[5] Panja T, Bhattacharjya D, Yu J S, et al. Nitrogen and phosphorus [18] Xu G, Dou H, Han J, et al. Free standing three-dimensional
co-doped cubic ordered mesoporous carbon as a supercapacitor nitrogen-doped carbon nanowire array for high-performance
electrode material with extraordinary cyclic stability[J]. Journal of supercapacitors[J]. Chemical Engineering Journal, 2017, 308: 222-228.
Materials Chemistry A, 2015, 3(35): 18001-18009. [19] Hang J Y, Li M, Maher F. Next-generation activated carbon
[6] Song Weiming (宋伟明), Xu Liyang (徐立洋),Sun Li (孙立), et al. supercapacitors: a simple step in electrode processing leads to
Synthesis of MCM-41 mesoporous carbon materials and their remarkable gains in energy density[J]. Advanced Functional
electrochemical performance[J]. Fine Chemical (精细化工), 2017, Materials, 2017, 27(15): 1605745.