Page 134 - 201811
P. 134
·1920· 精细化工 FINE CHEMICALS 第 35 卷
3 结论 [9] Zeng L Y, Pan Y W, Tian Y, et al. Doxorubicin-loaded NaYF 4∶
Yb/Tm-TiO 2 inorganic photosensitizers for NIR-triggered photodynamic
采用水解法将 TiO 2 包覆在 β 相 NaYF 4 ∶ therapy and enhanced chemotherapy in drug-resistant breast cancers[J].
Biomaterials, 2015, 57: 93-106.
Yb,Tm@NaGdF 4 ∶ Yb 表面,构建核壳结构 [10] Lucky S S, Muhammad N, Li Z Q, et al. Titania coated upconversion
UCNPs@TiO 2 ,TiO 2 纳米片疏松的复合方式有助于 nanoparticles for near-infrared light triggered photodynamic
therapy[J]. ACS Nano, 2015, 9(1): 191-205.
DOX 的负载和上转换发光的高效利用。通过对
[11] Zhao N, Wu B Y, Hu X L, et al. NIR-triggered high-efficient
UCNPs@TiO 2 修饰 PEI 与 PAA 和偶联 FA,制备了 photodynamic and chemo-cascade therapy using caspase-3 responsive
叶酸受体靶向纳米光敏剂,其平均水力学粒径为 460.8 functionalized upconversion nanoparticles[J]. Biomaterials, 2017,
141: 40-49.
nm,Zeta 电位为–5.7 mV,有机修饰成分对光敏剂在
[12] Lv R C, Yang P P, Fei H, et al. An imaging-guided platform for
980 nm NIR 下的 ROS 产生能力无明显影响,证明 synergistic photodynamic/photothermal/chemo-therapy with pH/
光敏剂具备 PDT 活性。靶向纳米光敏剂对 DOX 的 temperature-responsive drug release[J]. Biomaterials, 2015, 63:
115-127.
最大载药率可达 50.8%,包封率为 84.7%。DOX 从
[13] Zhong Y N, Meng F H, Deng C, et al. Targeted inhibition of human
靶向纳米光敏剂上的释放受介质 pH 值和 NIR 照射 hematological cancers in vivo by doxorubicin encapsulated in smart
的影响,在 NIR 照射下和 pH=5.0 的 PB 中 12 h 累 lipoic acid-crosslinked hyaluronic acid nanoparticles[J]. Drug
Delivery, 2017, 24(1): 1482-1490.
积释放率为 38.1%。进一步研究 DOX 负载的靶向纳
[14] Li K, Su Q Q, Yuan W, et al. Ratiometric monitoring of intracellular
米光敏剂的细胞毒性、靶向性和对肿瘤细胞的灭活 drug release by an upconversion drug delivery nanosystem[J].
效果,将有助于评价其作为肿瘤光动力治疗/化疗协 Applied Materials & Interfaces, 2015, 7(22): 12278-12286.
[15] Zhang L M, Lu Z X, Bai Y Y, et al. PEGylated denatured bovine
同治疗药物的可行性。
serum albumin modified water-soluble inorganic nanocrystals as
multifunctional drug delivery platforms[J]. Journal of Materials
参考文献:
Chemistry B, 2013, 1(9): 1289-1295.
[1] Ding Huiying (丁慧颖). Photodynamic therapy:Basic principles and [16] Huang S S, Cheng Z Y, Chen Y Y, et al. Multifunctional polyelectrolyte
3+
3+
applications (光动力学治疗基本原理及其应用)[M]. Beijing: multilayers coated onto Gd 2O 3∶Yb , Er @MSNs can be used as
Chemical Industry Press, 2014. drug carriers and imaging agents[J]. RSC Advances, 2015, 5(52):
[2] Swarnalatha L S, Muhammad I N, Huang K, et al. In vivo 41985-41993.
biocompatibility, biodistribution and therapeutic efficiency of titania [17] He M, Huang P, Zhang C L, et al. Dual phase-controlled synthesis of
coated upconversion nanoparticles for photodynamic therapy of solid uniform lanthanide-doped NaGdF 4 upconversion nanocrystals via an
oral cancers[J]. Theranostics, 2016, 6(11): 1844-1865. OA/ionic liquid two-phase system for in vivo dual-modality
[3] Huang Yan (黄燕), Zhu Weihua (朱卫华), Hua Mingqing (华明清), imaging[J]. Advanced Functional Materials, 2011, 21(23): 4470-
et al. Preparation and properties of CPTPP-FA-LCOS for photosensitive 4477.
functionalized drug delivery system[J]. Fine Chemicals (精细化工), [18] Li Z Q, Zhang Y. An efficient and user-friendly method for the
2017, 34(5): 494-498. synthesis of hexagonal-phase NaYF 4∶Yb, Er/Tm nanocrystals with
[4] Idris N M, Gnanasammandhan M K, Zhang J, et al. In vivo controllable shape and upconversion fluorescence[J]. Nanotechnology,
photodynamic therapy using upconversion nanoparticles as remote- 2008, 19(34): 1-5.
controlled nanotransducers[J]. Nature Medicine, 2012, 18(10): 1580- [19] Su W K, Zheng M M, Li L, et al. Directly coat TiO 2 on hydrophobic
1585. NaYF 4 ∶ Yb, Tm nanoplates and regulate their photocatalytic
[5] Dong C H, Liu Z Y, Wang S, et al. A protein-polymer bioconjugate- activities with the core size[J]. Journal of Materials Chemistry A,
coated upconversion nanosystem for simultaneous tumor cell 2014, 2(33): 13486-13491.
Imaging, photodynamic therapy, and chemotherapy[J]. Applied [20] An Huimei (安会梅), Jia Rui (贾蕊), Zhu Ruohua (朱若华).
Mater Interfaces, 2016, 8(48): 32688-32698. Determination of folic acid in milk powder and urine by fluorescence
[6] Idris N M, Sasidharan L S, Li Z, et al. Photoactivation of core-shell spectrophotometry-based on simultaneous oxidation of potassium
titania coated upconversion nanoparticles and its effect on cell permanganate and photochemical reaction [J]. Physical Testing and
death[J]. Journal of Materials Chemistry B, 2014, 2(40): 7017-7026. Chemical Analysis Part B (Chemical Analysis) (理化检验化学分
[7] Yu Z Z, Pan W, Li N, et al. A nuclear targeted dual-photosensitizer 册), 2007, 43(10): 870-872.
for drugresistant cancer therapy with NIR activated multiple ROS[J]. [21] Zhang H J, Shan Y F, Dong L J. A comparison of TiO 2 and ZnO
Chemical Science, 2016, 7: 4237-4244. nanoparticles as photosensitizers in photodynamic therapy for cancer
[8] Hou Z Y, Zhang Y X, Deng K R et al. UV-emitting upconversion- [J]. Journal of Biomedical Nanotechnology, 2014, 10(8): 1450-1457.
based TiO 2 photosensitizing nanoplatform: near-infrared light [22] Wang Huan (王欢). Study on mesoporous carbon nanospheres for
mediated in vivo photodynamic therapy via mitochondria- involved doxorubicin delivery system[D]. Fuzhou: Fujian University of
apoptosis pathway[J]. ACS Nano, 2015, 9(3): 2584-2599. Traditional Chinese Medicine(福建中医药大学), 2015.