Page 134 - 201811
P. 134

·1920·                            精细化工   FINE CHEMICALS                                  第 35 卷

            3    结论                                            [9]   Zeng L  Y, Pan  Y  W, Tian  Y,  et al. Doxorubicin-loaded  NaYF 4∶
                                                                   Yb/Tm-TiO 2 inorganic photosensitizers for NIR-triggered photodynamic
                 采用水解法将 TiO 2 包覆在 β 相 NaYF 4 ∶                     therapy and enhanced chemotherapy in drug-resistant breast cancers[J].
                                                                   Biomaterials, 2015, 57: 93-106.
            Yb,Tm@NaGdF 4 ∶ Yb 表面,构建核壳结构                       [10]  Lucky S S, Muhammad N, Li Z Q, et al. Titania coated upconversion
            UCNPs@TiO 2 ,TiO 2 纳米片疏松的复合方式有助于                       nanoparticles for near-infrared light triggered photodynamic
                                                                   therapy[J]. ACS Nano, 2015, 9(1): 191-205.
            DOX 的负载和上转换发光的高效利用。通过对
                                                               [11]  Zhao N, Wu B  Y, Hu X L,  et al. NIR-triggered  high-efficient
            UCNPs@TiO 2 修饰 PEI 与 PAA 和偶联 FA,制备了                    photodynamic and chemo-cascade  therapy using caspase-3 responsive
            叶酸受体靶向纳米光敏剂,其平均水力学粒径为 460.8                            functionalized upconversion  nanoparticles[J]. Biomaterials, 2017,
                                                                   141: 40-49.
            nm,Zeta 电位为–5.7 mV,有机修饰成分对光敏剂在
                                                               [12]  Lv R  C,  Yang P P, Fei H,  et al. An  imaging-guided platform for
            980 nm  NIR 下的 ROS 产生能力无明显影响,证明                        synergistic photodynamic/photothermal/chemo-therapy with pH/
            光敏剂具备 PDT 活性。靶向纳米光敏剂对 DOX 的                            temperature-responsive drug release[J]. Biomaterials, 2015, 63:
                                                                   115-127.
            最大载药率可达 50.8%,包封率为 84.7%。DOX 从
                                                               [13]  Zhong Y N, Meng F H, Deng C, et al. Targeted inhibition of human
            靶向纳米光敏剂上的释放受介质 pH 值和 NIR 照射                            hematological cancers in vivo by doxorubicin encapsulated in smart
            的影响,在 NIR 照射下和 pH=5.0 的 PB 中 12 h 累                    lipoic acid-crosslinked hyaluronic acid nanoparticles[J]. Drug
                                                                   Delivery, 2017, 24(1): 1482-1490.
            积释放率为 38.1%。进一步研究 DOX 负载的靶向纳
                                                               [14]  Li K, Su Q Q, Yuan W, et al. Ratiometric monitoring of intracellular
            米光敏剂的细胞毒性、靶向性和对肿瘤细胞的灭活                                 drug release by  an upconversion drug delivery nanosystem[J].
            效果,将有助于评价其作为肿瘤光动力治疗/化疗协                                Applied Materials & Interfaces, 2015, 7(22): 12278-12286.
                                                               [15]  Zhang L M, Lu Z X, Bai  Y  Y,  et al. PEGylated denatured bovine
            同治疗药物的可行性。
                                                                   serum albumin  modified water-soluble inorganic nanocrystals as
                                                                   multifunctional drug delivery platforms[J]. Journal of Materials
            参考文献:
                                                                   Chemistry B, 2013, 1(9): 1289-1295.
            [1]   Ding Huiying (丁慧颖). Photodynamic therapy:Basic principles and   [16]  Huang S S, Cheng Z Y, Chen Y Y, et al. Multifunctional polyelectrolyte
                                                                                         3+
                                                                                             3+
                 applications (光动力学治疗基本原理及其应用)[M]. Beijing:        multilayers coated onto Gd 2O 3∶Yb , Er @MSNs can be used as
                 Chemical Industry Press, 2014.                    drug carriers and imaging agents[J]. RSC Advances, 2015, 5(52):
            [2]   Swarnalatha L S, Muhammad I N, Huang K, et al. In vivo   41985-41993.
                 biocompatibility, biodistribution and therapeutic efficiency of titania   [17]  He M, Huang P, Zhang C L, et al. Dual phase-controlled synthesis of
                 coated upconversion nanoparticles for photodynamic therapy of solid   uniform lanthanide-doped NaGdF 4 upconversion nanocrystals via an
                 oral cancers[J]. Theranostics, 2016, 6(11): 1844-1865.   OA/ionic liquid two-phase system for in vivo dual-modality
            [3]  Huang Yan (黄燕), Zhu Weihua (朱卫华), Hua Mingqing (华明清),   imaging[J]. Advanced Functional Materials, 2011, 21(23): 4470-
                 et al. Preparation and properties of CPTPP-FA-LCOS for photosensitive   4477.
                 functionalized drug delivery system[J]. Fine Chemicals (精细化工),   [18]  Li Z Q, Zhang  Y. An efficient and  user-friendly method for the
                 2017, 34(5): 494-498.                             synthesis of hexagonal-phase NaYF 4∶Yb, Er/Tm nanocrystals with
            [4]   Idris N M, Gnanasammandhan M K, Zhang J,  et al. In vivo   controllable shape  and upconversion fluorescence[J].  Nanotechnology,
                 photodynamic therapy using upconversion nanoparticles as remote-   2008, 19(34): 1-5.
                 controlled nanotransducers[J]. Nature Medicine, 2012, 18(10): 1580-   [19]  Su W K, Zheng M M, Li L, et al. Directly coat TiO 2 on hydrophobic
                 1585.                                             NaYF 4 ∶ Yb, Tm nanoplates and regulate their  photocatalytic
            [5]   Dong C H, Liu Z Y, Wang S, et al. A protein-polymer bioconjugate-   activities with the  core size[J]. Journal of Materials Chemistry A,
                 coated upconversion nanosystem for simultaneous tumor cell   2014, 2(33): 13486-13491.
                 Imaging, photodynamic therapy, and chemotherapy[J].  Applied   [20]  An Huimei (安会梅), Jia Rui (贾蕊), Zhu Ruohua (朱若华).
                 Mater Interfaces, 2016, 8(48): 32688-32698.       Determination of folic acid in milk powder and urine by fluorescence
            [6]   Idris N M, Sasidharan L S, Li Z, et al. Photoactivation of core-shell   spectrophotometry-based on simultaneous oxidation of potassium
                 titania coated upconversion nanoparticles and its effect on cell   permanganate and photochemical reaction [J]. Physical Testing and
                 death[J]. Journal of Materials Chemistry B, 2014, 2(40): 7017-7026.   Chemical Analysis Part B (Chemical Analysis) (理化检验化学分
            [7]   Yu Z Z, Pan W, Li N, et al. A nuclear targeted dual-photosensitizer   册), 2007, 43(10): 870-872.
                 for drugresistant cancer therapy with NIR activated multiple ROS[J].   [21]  Zhang H J,  Shan  Y F, Dong L J.  A  comparison  of TiO 2 and ZnO
                 Chemical Science, 2016, 7: 4237-4244.             nanoparticles as photosensitizers in photodynamic therapy for cancer
            [8]   Hou Z Y, Zhang Y X, Deng K R et al. UV-emitting upconversion-   [J]. Journal of Biomedical Nanotechnology, 2014, 10(8): 1450-1457.
                 based TiO 2 photosensitizing nanoplatform: near-infrared light   [22]  Wang Huan (王欢). Study on mesoporous carbon nanospheres for
                 mediated in vivo photodynamic therapy via mitochondria- involved   doxorubicin  delivery system[D]. Fuzhou: Fujian University  of
                 apoptosis pathway[J]. ACS Nano, 2015, 9(3): 2584-2599.   Traditional Chinese Medicine(福建中医药大学), 2015.
   129   130   131   132   133   134   135   136   137   138   139