Page 147 - 201807
P. 147

第 7 期                      马先果,等:  柔性聚合物电解质的制备及其电化学性能                                   ·1215·


            307 mA·h/g,50 次循环后其比容量为 323 mA·h/g,                    of a SiO 2/poly (vinylidene fluoride-hexafluoropropylene)-coated poly
            具有良好的电化学稳定性;                                           (ethylene terephthalate) nonwoven composite separator for a lithium-
                (3)采用改进的乳液聚合法制得兼顾力学性能                              ion battery[J]. Journal of Materials Chemistry, 2011, 21(38): 14747-
                                                                   14754.
            和电化学性能的聚合物电解质膜(S 1、S 2、S 3 和 S 4),
                                                               [13]  Huang Xueqing (黄雪青), Huang Zhixiong (黄志雄), Qin Gang (秦
            为聚合物电解质膜的制备提供了一种廉价、绿色环
                                                                   钢). Study on polymeric waterborne acrylate  emulsion  containing
            保的方法,且有助于我们进一步理解复杂多功能聚                                 reactive emulsifier[J]. Modern Paint & Finishing (现代涂料与涂装),
            合物电解质膜的构筑机制,为锂二次电池高性能聚                                 2007, 10(1): 17-19.
            合物电解质膜相关科学问题的研究提供了一定的科                             [14]  Ma X G, Huang X L, Gao J D,  et al. Anionic polymer electrolyte
                                                                   with enhanced electrochemical performance based on surface-
            学依据和技术支持。
                                                                   charged latex nanoparticles for  flexible lithium-ion  batteries[J].
            参考文献:                                                  Journal of Power Sources, 2014, 272: 259-266.
                                                               [15]  Brandrup J, Immergut E H, Grulke E A. Polymer handbook[M]. 4th
            [1]   Liu B, Zhang J G, Shen G. Pursuing two-dimensional nanomaterials
                                                                   ed. John Wiley & Sons, Inc, New York, 1999:  Ⅵ198-Ⅵ209.
                 for flexible lithium-ion batteries[J]. Nano Today, 2016, 11(1): 82-97.
                                                               [16]  Every H A, Zhou F, Forsytha M, et al. Lithium ion mobility in poly
            [2]   Song Z, Ma T, Tang R, et al. Origami lithium-ion batteries[J]. Nature                 7
                                                                   (vinyl alcohol) based polymer electrolytes as determined by  LiNMR
                 Communication, 2014, 5(1): 3140-3145.
                                                                   spectroscopy[J]. Electrochimca Acta, 1998, 43(10/11): 1465-1469.
            [3]   Zhou G, Li F, Cheng H M. Progress in flexible lithium batteries and
                                                               [17]  Liang Y H, Wang C C, Chen C Y. Comb-like copolymer-based gel
                 future prospects[J]. Energy & Environmental Science, 2014, 7(4):
                                                                   polymer electrolytes for lithium ion conductors[J]. Journal of Power
                 1307-1338.
                                                                   Sources, 2008, 176(1): 340-346.
            [4]   Lee S Y, Choi K H, Choi S, et al. Progress in flexible energy storage
                                                               [18]  Holland B J, Hay J N.  The thermal degradation of poly (vinyl
                 and conversion systems, with a focus on cable-type lithium-ion
                                                                   alcohol)[J]. Polymer, 2001, 42 (16): 6775-6783.
                 batteries[J]. Energy & Environmental Science, 2013, 6(8):
                                                               [19]  Arora P, Zhang Z M. Battery separators[J]. Chemical Reviews, 2004,
                 2414-2423.
                                                                   104(10): 4419-4462.
            [5]   Zhang H, Li Ch, Piszcz M, et al. Single lithium-ion conducting solid
                                                               [20]  Wang Q, Song W, Fan L,  et al. Flexible, high-voltage and
                 polymer electrolytes: advances and perspectives[J]. Chemical Society
                                                                   free-standing composite polymer electrolyte membrane  based on
                 Review, 2017, 46(3), 797-815.                     triethylene glycol  diacetate-2-propenoic acid butyl ester copolymer
            [6]   Saikia D,  Ho S Y, Chang Y J,  et al. Blending of hard and soft   for lithium-ion batteries[J]. Journal of Membrane Science, 2015, 492:
                 organic-inorganic hybrids  for use as an effective  electrolyte   490-496.
                 membrane in lithium-ion batteries[J]. Journal of Membrane Science,   [21]  Kim S H, Choi K  H, Cho S J,  et al.  Mechanically compliant and
                 2016, 503: 59-68.                                 lithium dendrite growth-suppressing composite polymer electrolytes
            [7]   Wang Q, Song W-L, Fan L-Z,  et al.  Effect of polyacrylonitrile on   for flexible lithium-ion batteries[J]. Journal of Materials Chemistry
                 triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer   A, 2013, 1(16): 4949-4955.
                 electrolytes with interpenetrating crosslinked network for flexible   [22]  Zhou D Y, Wang G Z, Li W S, et al. Preparation and performances of
                 lithium ion batteries[J]. Journal of Power Sources, 2015, 295: 139-   porous polyacrylonitrile-methyl methacrylate membrane for lithium-
                 148.                                              ion batteries[J]. Journal of Power Sources, 2008, 184(2): 477-480.
            [8]   Nair J R, Destro M, Bella F,  et al. Thermally  cured semi-   [23]  Cho J H, Park J H, Kim J H, et al. Facile fabrication of nanoporous
                 interpenetrating electrolyte networks (s-IPN) for safe and aging-   composite separator membranes for lithium-ion  batteries: poly
                 resistant secondary lithium polymer batteries[J]. Journal of Power   (methyl  methacrylate) colloidal  particles-embedded nonwoven  poly
                 Sources, 2016, 306: 258-267.                      (ethylene terephthalate)[J]. Journal of Materials Chemistry, 2011,
            [9]   Patel M, Bhattacharyya A J.  A crosslinked “polymer-gel”   21(22): 8192-8198.
                 rechargeable lithium-ion battery electrolyte from free radical   [24]  Granvalet M L,  Honeycutt L,  Teeters D. Characterization of
                 polymerization using  nonionic plastic crystalline electrolyte   self-assembled molecular layers at the polymer electrolyte: lithium
                 medium[J]. Energy & Environmental Science, 2011, 4(2): 429-432.     electrode interface[J]. Electrochimca Acta, 2000, 45(8/9): 1491-1500.
            [10]  Lee Y S, Ju S H, Kim J H, et al. Composite gel polymer electrolytes   [25]  Huai Y J, Gao J D, Deng Z H, et al. Preparation and characterization
                                          +
                 containing core-shell structured  SiO 2  (Li ) particles for lithium-ion   of a special structural poly (acrylonitrile)-based microporous
                 polymer batteries[J]. Electrochemistry Communications, 2012, 17(1):   membrane for lithium-ion batteries[J]. Ionics, 2010, 16(7): 603-611.
                 18-21.                                        [26] Liu  Yunjian  (刘云建), Hu Qiyang (胡启阳), Li Xinhai (李新海),
            [11]  F Croce, G  B Appetecchi, L Persi,  et al.  Nanocomposite polymer   et al. Recovery of LiCoO 2 and its electrochemical performance [J].
                 electrolytes for lithium batteries[J]. Nature, 1998, 496(6692): 456-458.     The Chinese Journal of Nonferrous  Metals (中国有色金属学报),
            [12]  Choi E-S, Lee S-Y. Particle size-dependent, tunable porous structure   2007, 17(6): 984-989.
   142   143   144   145   146   147   148   149   150   151   152