Page 147 - 201807
P. 147
第 7 期 马先果,等: 柔性聚合物电解质的制备及其电化学性能 ·1215·
307 mA·h/g,50 次循环后其比容量为 323 mA·h/g, of a SiO 2/poly (vinylidene fluoride-hexafluoropropylene)-coated poly
具有良好的电化学稳定性; (ethylene terephthalate) nonwoven composite separator for a lithium-
(3)采用改进的乳液聚合法制得兼顾力学性能 ion battery[J]. Journal of Materials Chemistry, 2011, 21(38): 14747-
14754.
和电化学性能的聚合物电解质膜(S 1、S 2、S 3 和 S 4),
[13] Huang Xueqing (黄雪青), Huang Zhixiong (黄志雄), Qin Gang (秦
为聚合物电解质膜的制备提供了一种廉价、绿色环
钢). Study on polymeric waterborne acrylate emulsion containing
保的方法,且有助于我们进一步理解复杂多功能聚 reactive emulsifier[J]. Modern Paint & Finishing (现代涂料与涂装),
合物电解质膜的构筑机制,为锂二次电池高性能聚 2007, 10(1): 17-19.
合物电解质膜相关科学问题的研究提供了一定的科 [14] Ma X G, Huang X L, Gao J D, et al. Anionic polymer electrolyte
with enhanced electrochemical performance based on surface-
学依据和技术支持。
charged latex nanoparticles for flexible lithium-ion batteries[J].
参考文献: Journal of Power Sources, 2014, 272: 259-266.
[15] Brandrup J, Immergut E H, Grulke E A. Polymer handbook[M]. 4th
[1] Liu B, Zhang J G, Shen G. Pursuing two-dimensional nanomaterials
ed. John Wiley & Sons, Inc, New York, 1999: Ⅵ198-Ⅵ209.
for flexible lithium-ion batteries[J]. Nano Today, 2016, 11(1): 82-97.
[16] Every H A, Zhou F, Forsytha M, et al. Lithium ion mobility in poly
[2] Song Z, Ma T, Tang R, et al. Origami lithium-ion batteries[J]. Nature 7
(vinyl alcohol) based polymer electrolytes as determined by LiNMR
Communication, 2014, 5(1): 3140-3145.
spectroscopy[J]. Electrochimca Acta, 1998, 43(10/11): 1465-1469.
[3] Zhou G, Li F, Cheng H M. Progress in flexible lithium batteries and
[17] Liang Y H, Wang C C, Chen C Y. Comb-like copolymer-based gel
future prospects[J]. Energy & Environmental Science, 2014, 7(4):
polymer electrolytes for lithium ion conductors[J]. Journal of Power
1307-1338.
Sources, 2008, 176(1): 340-346.
[4] Lee S Y, Choi K H, Choi S, et al. Progress in flexible energy storage
[18] Holland B J, Hay J N. The thermal degradation of poly (vinyl
and conversion systems, with a focus on cable-type lithium-ion
alcohol)[J]. Polymer, 2001, 42 (16): 6775-6783.
batteries[J]. Energy & Environmental Science, 2013, 6(8):
[19] Arora P, Zhang Z M. Battery separators[J]. Chemical Reviews, 2004,
2414-2423.
104(10): 4419-4462.
[5] Zhang H, Li Ch, Piszcz M, et al. Single lithium-ion conducting solid
[20] Wang Q, Song W, Fan L, et al. Flexible, high-voltage and
polymer electrolytes: advances and perspectives[J]. Chemical Society
free-standing composite polymer electrolyte membrane based on
Review, 2017, 46(3), 797-815. triethylene glycol diacetate-2-propenoic acid butyl ester copolymer
[6] Saikia D, Ho S Y, Chang Y J, et al. Blending of hard and soft for lithium-ion batteries[J]. Journal of Membrane Science, 2015, 492:
organic-inorganic hybrids for use as an effective electrolyte 490-496.
membrane in lithium-ion batteries[J]. Journal of Membrane Science, [21] Kim S H, Choi K H, Cho S J, et al. Mechanically compliant and
2016, 503: 59-68. lithium dendrite growth-suppressing composite polymer electrolytes
[7] Wang Q, Song W-L, Fan L-Z, et al. Effect of polyacrylonitrile on for flexible lithium-ion batteries[J]. Journal of Materials Chemistry
triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer A, 2013, 1(16): 4949-4955.
electrolytes with interpenetrating crosslinked network for flexible [22] Zhou D Y, Wang G Z, Li W S, et al. Preparation and performances of
lithium ion batteries[J]. Journal of Power Sources, 2015, 295: 139- porous polyacrylonitrile-methyl methacrylate membrane for lithium-
148. ion batteries[J]. Journal of Power Sources, 2008, 184(2): 477-480.
[8] Nair J R, Destro M, Bella F, et al. Thermally cured semi- [23] Cho J H, Park J H, Kim J H, et al. Facile fabrication of nanoporous
interpenetrating electrolyte networks (s-IPN) for safe and aging- composite separator membranes for lithium-ion batteries: poly
resistant secondary lithium polymer batteries[J]. Journal of Power (methyl methacrylate) colloidal particles-embedded nonwoven poly
Sources, 2016, 306: 258-267. (ethylene terephthalate)[J]. Journal of Materials Chemistry, 2011,
[9] Patel M, Bhattacharyya A J. A crosslinked “polymer-gel” 21(22): 8192-8198.
rechargeable lithium-ion battery electrolyte from free radical [24] Granvalet M L, Honeycutt L, Teeters D. Characterization of
polymerization using nonionic plastic crystalline electrolyte self-assembled molecular layers at the polymer electrolyte: lithium
medium[J]. Energy & Environmental Science, 2011, 4(2): 429-432. electrode interface[J]. Electrochimca Acta, 2000, 45(8/9): 1491-1500.
[10] Lee Y S, Ju S H, Kim J H, et al. Composite gel polymer electrolytes [25] Huai Y J, Gao J D, Deng Z H, et al. Preparation and characterization
+
containing core-shell structured SiO 2 (Li ) particles for lithium-ion of a special structural poly (acrylonitrile)-based microporous
polymer batteries[J]. Electrochemistry Communications, 2012, 17(1): membrane for lithium-ion batteries[J]. Ionics, 2010, 16(7): 603-611.
18-21. [26] Liu Yunjian (刘云建), Hu Qiyang (胡启阳), Li Xinhai (李新海),
[11] F Croce, G B Appetecchi, L Persi, et al. Nanocomposite polymer et al. Recovery of LiCoO 2 and its electrochemical performance [J].
electrolytes for lithium batteries[J]. Nature, 1998, 496(6692): 456-458. The Chinese Journal of Nonferrous Metals (中国有色金属学报),
[12] Choi E-S, Lee S-Y. Particle size-dependent, tunable porous structure 2007, 17(6): 984-989.