Page 152 - 201807
P. 152

·1220·                            精细化工   FINE CHEMICALS                                  第 35 卷

            电荷转移电阻 R ct ;低频区的斜线代表 Warburg 扩散                   以进一步提高该材料的倍率性能和循环性能,使其
            过程  [15] ,可由此模拟计算出 Warburg  阻抗 R w ,等              成为最具潜力的锂离子电池负极材料之一。
            效电路中的 R s 为溶液阻抗,CPE 代表电容。不同碳
                                                               参考文献:
            质量分数 LTO-C 循环前的 R s 和 R ct 见表 1。由表 1
                                                               [1]   Qi L, Chen S, Xin Y, et al. Self-supported Li 4Ti 5O 12 nanosheet arrays
            可知,LTO-C 3%的电荷转移电阻最小,说明锂离子
                                                                   for lithium ion batteries with excellent rate capability and ultralong
            在样品 LTO-C 3%中嵌入和脱出比在其他 3 个样品                           cycle life[J]. Energy Environ Sci, 2014, 7(6): 1924-1930.
            中更为容易。                                             [2]   Liu G, Zhang R, Bao K,  et al.  Synthesis of nano-Li 4Ti 5O 12 anode
                                                                   material for lithium ion batteries by  a biphasic interfacial reaction
                                                                   route[J]. Ceram Int, 2016, 42(9): 11468-11472.
                                                               [3]   Wang J, Liu X M, Yang H, et al. Characterization and electrochemical
                                                                   properties of carbon-coated Li 4Ti 5O 12 prepared by a  citric acid
                                                                   sol-gel method[J]. J Alloy Compd, 2011, 509(3): 712-718.
                                                               [4]   Farmann A, Waag W, Marongiu A, et al. Critical review of on-board
                                                                   capacity  estimation  techniques for lithium-ion  batteries in  electric
                                                                   and hybrid electric vehicles[J]. J Power Sources, 2015, 281: 114-130.
                                                               [5]   Kamata M, Fujine S,  Yoneda K,  et al. Diffusion coefficient
                                                                   measurement of lithium ion in sintered Li 1.33Ti 1.67O 4 by means of
                                                                   neutron radiography[J]. Solid State Ionics, 1999, 123(1): 165-172.
                                                                                             4+
                                                               [6]   Lu P, Huang X, Ren Y, et al. Na  and Zr  Co-doped Li 4Ti 5O 12 as
                                                                                        +

            图 8   不同碳质量分数 LTO-C 循环前的交流阻抗曲线及                        anode materials  with superior electrochemical performance for
                                                                   lithium-ion batteries[J]. Rsc Advances, 2016, 93(6): 90455-90461.
                  等效电路图
            Fig.  8    Electrochemical impedance spectra before cycling   [7]   Wu Xianming (吴显明), Xiao Zhuobing (肖卓炳), Ma Mingyou (麻
                   for the LTO-C with different mass fractions of carbon   明友). Preparation and characterization of Li 4/3Ti 5/3O 4/Ag composites
                                                                   by sol-gel method[J]. Fine Chemicals, 2010, 27(8): 751-754, 759.
                表 1   不同碳质量分数 LTO-C 循环前的 R s 和 R ct            [8]  Wang  Wei  (王蔚), Cao Gaoshao (曹高劭), Ye  Jingya (叶静雅).
            Table 1  Values of R s  and R ct  of the LTO-C with different mass   Preparation and electrochemical properties of Li 4Ti 5O 12/(Ag+C)
                    fractions of carbon before cycling             composites by solid phase method[J]. Chinese J Inorg Chem, 2009,
                                                                   25(12): 2151-2155.
                                    R s/Ω         R ct/Ω
                                                               [9]   Wang Y Y,  Hao Y  J,  Lai  Q Y,  et al. A new composite material
                 LTO-C 1%          10.440        278.5             Li 4Ti 5O 12-SnO 2 for lithium-ion batteries[J]. Ionics, 2008, 14(1): 85-88.
                 LTO-C 3%           6.198        187.2         [10]  Ren Y, Peng L, Huang X, et al. In-situ synthesis of nano-Li 4Ti 5O 12/C
                                                                   composite as an anode material for Li-ion batteries[J]. Solid State
                 LTO-C 5%          12.178        378.0
                                                                   Ionics, 2015, 274: 83-87.
                 LTO-C 10%         12.550        387.7         [11]  Jiang Zhijun (蒋志军), Liu Kaiyu (刘开宇), Chen Yunyang (陈云
                                                                   扬). Preparation and electrochemical properties of Li 4Ti 5O 12/(Cu+C)
            3   结论                                                 composites[J]. Chinese J Inorg Chem, 2011, 27(2): 239-244.
                                                               [12]  Ye Jingya (叶静雅). Synthesis and electrochemical properties of
                 采用原位复合法制得的锂离子电池负极材料                               Li 4Ti 5O 12 anode  material for lithium  ion batteries by solid phase
            LTO-C 无杂相存在,颗粒表面较光滑,大小均匀,                              method[D]. Zhejiang(浙江): Zhejiang University(浙江大学), 2008.
            晶粒尺寸约为 500 nm。与其他 3 个样品相比,LTO-C                    [13]  Wang Jiaoli (王姣丽). Synthesis of Li 4Ti 5O 12  electrode material by
                                                                   two-step calcination reaction and  study on modification  of carbon
            3%在 0.5 C 下首次放电比容量最高,为 185.9 mAh/g。在
                                                                   coating[D]. Changsha(长沙):Central South University(中南大学), 2009.
            4.0 C 下,LTO-C 3%的首次放电比容量为 106.9 mAh/g。            [14] Geng  Hailong  (耿海龙), Wu Jun (吴军), Ju Hua (鞠华). Effect of
            循环伏安显示,LTO-C 3%的氧化还原峰电位差为                              carbon content on electrochemical properties of LiFe 0.3Mn 0.6Co 0.1PO 4/C
            278.6 mV,峰电流为 1.985 mA。交流阻抗显示,                         materials[J]. J Funct Mater, 2013, 44(2): 191-193.
                                                               [15]  Jin B, Jin E M, Park K  H,  et al. Electrochemical properties of
            LTO-C 3%的电荷转移电阻最小,R ct 为 187.2 Ω。合
                                                                   LiFePO 4-multiwalled carbon nanotubes composite cathode materials
            成的复合负极材料中,LTO-C 3%的电化学性能最                              for lithium polymer battery[J]. Electrochem Commun, 2008, 10(10):
            优。接下来可以对 LTO 进行离子掺杂和表面修饰,                              1537-1540.
   147   148   149   150   151   152   153   154   155   156   157