Page 152 - 201807
P. 152
·1220· 精细化工 FINE CHEMICALS 第 35 卷
电荷转移电阻 R ct ;低频区的斜线代表 Warburg 扩散 以进一步提高该材料的倍率性能和循环性能,使其
过程 [15] ,可由此模拟计算出 Warburg 阻抗 R w ,等 成为最具潜力的锂离子电池负极材料之一。
效电路中的 R s 为溶液阻抗,CPE 代表电容。不同碳
参考文献:
质量分数 LTO-C 循环前的 R s 和 R ct 见表 1。由表 1
[1] Qi L, Chen S, Xin Y, et al. Self-supported Li 4Ti 5O 12 nanosheet arrays
可知,LTO-C 3%的电荷转移电阻最小,说明锂离子
for lithium ion batteries with excellent rate capability and ultralong
在样品 LTO-C 3%中嵌入和脱出比在其他 3 个样品 cycle life[J]. Energy Environ Sci, 2014, 7(6): 1924-1930.
中更为容易。 [2] Liu G, Zhang R, Bao K, et al. Synthesis of nano-Li 4Ti 5O 12 anode
material for lithium ion batteries by a biphasic interfacial reaction
route[J]. Ceram Int, 2016, 42(9): 11468-11472.
[3] Wang J, Liu X M, Yang H, et al. Characterization and electrochemical
properties of carbon-coated Li 4Ti 5O 12 prepared by a citric acid
sol-gel method[J]. J Alloy Compd, 2011, 509(3): 712-718.
[4] Farmann A, Waag W, Marongiu A, et al. Critical review of on-board
capacity estimation techniques for lithium-ion batteries in electric
and hybrid electric vehicles[J]. J Power Sources, 2015, 281: 114-130.
[5] Kamata M, Fujine S, Yoneda K, et al. Diffusion coefficient
measurement of lithium ion in sintered Li 1.33Ti 1.67O 4 by means of
neutron radiography[J]. Solid State Ionics, 1999, 123(1): 165-172.
4+
[6] Lu P, Huang X, Ren Y, et al. Na and Zr Co-doped Li 4Ti 5O 12 as
+
图 8 不同碳质量分数 LTO-C 循环前的交流阻抗曲线及 anode materials with superior electrochemical performance for
lithium-ion batteries[J]. Rsc Advances, 2016, 93(6): 90455-90461.
等效电路图
Fig. 8 Electrochemical impedance spectra before cycling [7] Wu Xianming (吴显明), Xiao Zhuobing (肖卓炳), Ma Mingyou (麻
for the LTO-C with different mass fractions of carbon 明友). Preparation and characterization of Li 4/3Ti 5/3O 4/Ag composites
by sol-gel method[J]. Fine Chemicals, 2010, 27(8): 751-754, 759.
表 1 不同碳质量分数 LTO-C 循环前的 R s 和 R ct [8] Wang Wei (王蔚), Cao Gaoshao (曹高劭), Ye Jingya (叶静雅).
Table 1 Values of R s and R ct of the LTO-C with different mass Preparation and electrochemical properties of Li 4Ti 5O 12/(Ag+C)
fractions of carbon before cycling composites by solid phase method[J]. Chinese J Inorg Chem, 2009,
25(12): 2151-2155.
R s/Ω R ct/Ω
[9] Wang Y Y, Hao Y J, Lai Q Y, et al. A new composite material
LTO-C 1% 10.440 278.5 Li 4Ti 5O 12-SnO 2 for lithium-ion batteries[J]. Ionics, 2008, 14(1): 85-88.
LTO-C 3% 6.198 187.2 [10] Ren Y, Peng L, Huang X, et al. In-situ synthesis of nano-Li 4Ti 5O 12/C
composite as an anode material for Li-ion batteries[J]. Solid State
LTO-C 5% 12.178 378.0
Ionics, 2015, 274: 83-87.
LTO-C 10% 12.550 387.7 [11] Jiang Zhijun (蒋志军), Liu Kaiyu (刘开宇), Chen Yunyang (陈云
扬). Preparation and electrochemical properties of Li 4Ti 5O 12/(Cu+C)
3 结论 composites[J]. Chinese J Inorg Chem, 2011, 27(2): 239-244.
[12] Ye Jingya (叶静雅). Synthesis and electrochemical properties of
采用原位复合法制得的锂离子电池负极材料 Li 4Ti 5O 12 anode material for lithium ion batteries by solid phase
LTO-C 无杂相存在,颗粒表面较光滑,大小均匀, method[D]. Zhejiang(浙江): Zhejiang University(浙江大学), 2008.
晶粒尺寸约为 500 nm。与其他 3 个样品相比,LTO-C [13] Wang Jiaoli (王姣丽). Synthesis of Li 4Ti 5O 12 electrode material by
two-step calcination reaction and study on modification of carbon
3%在 0.5 C 下首次放电比容量最高,为 185.9 mAh/g。在
coating[D]. Changsha(长沙):Central South University(中南大学), 2009.
4.0 C 下,LTO-C 3%的首次放电比容量为 106.9 mAh/g。 [14] Geng Hailong (耿海龙), Wu Jun (吴军), Ju Hua (鞠华). Effect of
循环伏安显示,LTO-C 3%的氧化还原峰电位差为 carbon content on electrochemical properties of LiFe 0.3Mn 0.6Co 0.1PO 4/C
278.6 mV,峰电流为 1.985 mA。交流阻抗显示, materials[J]. J Funct Mater, 2013, 44(2): 191-193.
[15] Jin B, Jin E M, Park K H, et al. Electrochemical properties of
LTO-C 3%的电荷转移电阻最小,R ct 为 187.2 Ω。合
LiFePO 4-multiwalled carbon nanotubes composite cathode materials
成的复合负极材料中,LTO-C 3%的电化学性能最 for lithium polymer battery[J]. Electrochem Commun, 2008, 10(10):
优。接下来可以对 LTO 进行离子掺杂和表面修饰, 1537-1540.