Page 41 - 201807
P. 41
第 7 期 肖国庆,等: 酚醛树脂热解炭的电磁屏蔽性能 ·1109·
生成了碳化硅纳米线,但其电导率相对较低,对于 解炭内原位生成了大量多壁碳纳米管,显著提高了
电磁屏蔽性能的提升有限。而本文添加少量氯化铁 材料的电磁屏蔽效能,因此,适合作为高温电磁屏
即对酚醛树脂热解炭的有序化程度有明显提高,热 蔽材料的候选材料。
表 4 不同热解炭的电磁屏蔽效能比较
Table 4 Comparison of EMI SE of different pyrolytic products
电导率 EMI SE
原料 催化剂/填料 厚度/mm 热解温度/℃ 文献
/(S/cm) /(dB/mm)
环氧树脂 15% CNTs 2 1100 0.2 12.5 [12]
酚醛树脂 0.5% Ni 2 1000 0.35 22.5 [13]
酚醛树脂 4% Fe (C 5H 5) 2 4 1500 0.25 8.5 [9]
1000 75.0 10.8
酚醛树脂 0.5% FeCl 3 2 本文
1500 69.6 12.5
注:表中的百分数指质量分数
Journal of Materials Science and Technology, 2011, 27(3): 266-270.
3 结论 [11] Zheng Zhifeng (郑志锋), Jiang Jianchun (蒋剑春), Dai Weidi (戴伟
娣), et al. Research progress in carbon-based electromagnetic shielding
composites [J]. Materials Review (材料导报), 2009, 23: 23-26.
(1)酚醛树脂从 400 ℃开始热解,800 ℃开始 [12] Huang Y, Li N, Ma Y F, et al. The influence of single-walled carbon
nanotube structure on the electromagnetic interference shielding
完全炭化,热解后的最终产物为无定形碳,1000 ℃ efficiency of its epoxy composites [J]. Carbon, 2007, 45: 1614-1621.
热解时的残炭率为 55%。随着热解温度的升高,酚 [13] Liu X M, Yin X W, Kong L, et al. Fabrication and electromagnetic
interference shielding effectiveness of carbon nanotube reinforced
醛树脂热解炭的有序化程度逐渐提高,电导率增大, carbon fiber/pyrolytic carbon composites [J]. Carbon, 2014, 68:
电磁屏蔽效能先增大后减小,900℃热解时的电磁屏 501-510.
[14] Wang Junkai (王军凯), Deng Xiangong (邓先功), Zhang Haijun (张
蔽效能最高达 28.2 dB。 海军 ), et al. Current research progress of carbon nanotubes
reinforced carbon composite refractories [J]. Naihuo Cailiao (耐火材
(2)添加质量分数 0.5%FeCl 3 催化剂对于酚醛 料), 2016, 50(2): 150-154.
树脂 1000 ℃热解具有催化石墨化作用,使热解炭有 [15] Ding D H, Luo F, Zhou W C. Effects of thermal oxidation on
electromagnetic interference shielding properties of SiC f/SiC
序化程度得以提高,更为重要的是酚醛树脂热解炭 composites [J]. Ceramics International, 2013, 39: 4281-4286.
中原位生成了大量吸波性能较好的多壁碳纳米管, [16] Ma Y Z, Yin X W, Li Q. Effects of heat treatment temperature on
microstructure and electromagnetic properties of ordered mesoporous
形成导电网络,提高了总电磁屏蔽效能。添加质量 carbon [J]. Transactions of Nonferrous Metals Society of China,
2013, 23: 1652-1660.
分数 0.5%FeCl 3 催化剂对 1500 ℃热解试样的电磁屏 [17] Wu Xiaoxian (吴小贤), Li Hongxia (李红霞), Liu Guoqi (刘国齐),
蔽性能改善作用更明显,特别是在低频段。 et al. Effect of KCl on growth of carbon fibers during carbonization
of phenolic resin [J]. Naihuo Cailiao (耐火材料), 2015, 49(1): 1-5.
[18] Jiang H Y, Wang J G, Wu S Q, et al. The pyrolysis mechanism of
参考文献:
phenol formaldehyde resin [J]. Polymer Degradation and Stability,
[1] Gu Yingying (古映莹), Qiu Xiaoyong (邱小勇), Hu Qiming (胡启 2012, 97: 1527-1533.
明), et al. Development of electromagnetic shielding material [J]. [19] Zhu Boquan (朱伯铨), Wei Guoping (魏国平), Li Xiangcheng (李享
Materials Review (材料导报), 2005, 19(2): 53-56. 成), et al. Effect of carbonization temperature on microstructure and
[2] Li Y, Shen B, Pei X L, et al. Ultrathin carbon foams for effective oxidation resistance of carbon derived from doping modified phenol
electromagnetic interference shielding [J]. Carbon, 2016, 100: resin [J]. Journal of the Chinese Ceramic Society (硅酸盐学报),
375-385. 2014, 42(6): 773-778.
[3] Kumar R, Dhakate S R, Saini P, et al. Improved electromagnetic [20] Zhou Defeng (周德凤), Zhao Yanling (赵艳玲), Ma Yue (马越), et
interference shielding effectiveness of light weight carbon foam by al. Effect of doping ZnCl 2 on the structure and properties of
ferrocene accumulation [J]. RSC Advances, 2013, 3: 4145-4151. carbonized phenolic resin materials [J]. Acta Chimica Sinica (化学学
[4] Ding Shijing (丁世敬), Zhao Yuezhi (赵跃智), Ge Debiao (葛德彪). 报), 2004, 62(14): 1333-1338.
Research progress in electromagnetic shielding materials [J]. [21] Ferrari A C, Robertson J. Raman spectroscopy of amorphous,
Materials Review (材料导报), 2008, 22(4): 30-33. nanostructured, diamond-like carbon, and nanodiamond [J].
[5] Thomassin J M, Jerome C, Pardoen T, et al. Polymer/carbon based Philosophical Transactions, 2004, 362: 2477.
composites as electromagnetic interference (EMI) shielding materials [22] Ma Y, Wang S, Chen Z H. Raman spectroscopy studies of the high-
[J]. Materials Science and Engineering, 2013, 74: 211-232. temperature evolution of the free carbon phase in polycarbosilane
[6] Chung D D L.Electromagnetic interference shielding effectiveness of derived SiC ceramics [J]. Ceramics International, 2010, 36: 2455-2459.
carbon materials [J]. Carbon, 2001, 39: 279-285. [23] Wang Xian (汪贤), Zhu Boquan (朱伯铨), Li Xiangcheng (李享成),
[7] Letellier M, Macutkevic J, Kuzhir P, et al. Electromagnetic properties et al. Effect of Metal co-doping on microstructure and oxidation
of model vitreous carbon foams [J]. Carbon, 2017,122: 217-227. resistance of carbon derived from phenol resin [J]. Journal of the
[8] Kumar R, Singh A P, Chand M, et al. Improved microwave Chinese Ceramic Society (硅酸盐学报), 2015, 43(3): 316-321.
absorption in lightweight resin-based carbon foam by decorating with [24] Kukovitsky E F, Lvov S G, Sainov N A, VLS-growth of carbon
magnetic and dielectric nanoparticles [J]. RSC Advances, 2014, 4: nanotubes from the vapor [J]. Chemical Physics Letters, 2000, 317:
23476-23484. 65-70.
[9] Farhan S, Wang R, Li K. Electromagnetic interference shielding [25] Qing Yuchang (卿玉长), Zhou Wancheng (周万城), Luo Fa (罗发),
effectiveness of carbon foam containing in situ grown silicon carbide et al. Electromagnetic and absorbing properties of Multi-walled
nanowires [J]. Ceramics International, 2016, 42: 11330-11340. carbon nanotubes/epoxy-silicone coatings [J]. Journal of Inorganic
[10] Zhao M, Song H. Catalytic graphitization of phenolic resin [J]. Materials (无机材料学报), 2010, 25(2): 181-185