Page 41 - 201807
P. 41

第 7 期                          肖国庆,等:  酚醛树脂热解炭的电磁屏蔽性能                                   ·1109·


            生成了碳化硅纳米线,但其电导率相对较低,对于                             解炭内原位生成了大量多壁碳纳米管,显著提高了
            电磁屏蔽性能的提升有限。而本文添加少量氯化铁                             材料的电磁屏蔽效能,因此,适合作为高温电磁屏
            即对酚醛树脂热解炭的有序化程度有明显提高,热                             蔽材料的候选材料。

                                             表 4   不同热解炭的电磁屏蔽效能比较
                                    Table 4    Comparison of EMI SE of different pyrolytic products
                                                                             电导率          EMI SE
                 原料          催化剂/填料          厚度/mm         热解温度/℃                                     文献
                                                                             /(S/cm)     /(dB/mm)
                环氧树脂         15% CNTs           2             1100             0.2         12.5       [12]
                酚醛树脂         0.5% Ni            2             1000            0.35         22.5       [13]
                酚醛树脂         4% Fe (C 5H 5) 2   4             1500            0.25          8.5       [9]
                                                              1000            75.0         10.8
                酚醛树脂         0.5% FeCl 3        2                                                     本文
                                                              1500            69.6         12.5
                注:表中的百分数指质量分数

                                                                   Journal of Materials Science and Technology, 2011, 27(3): 266-270.
            3   结论                                             [11] Zheng Zhifeng (郑志锋), Jiang Jianchun (蒋剑春), Dai Weidi (戴伟
                                                                   娣), et al. Research progress in carbon-based electromagnetic shielding
                                                                   composites [J]. Materials Review (材料导报), 2009, 23: 23-26.
                 (1)酚醛树脂从 400 ℃开始热解,800 ℃开始                    [12]  Huang Y, Li N, Ma Y F, et al. The influence of single-walled carbon
                                                                   nanotube structure on the electromagnetic interference shielding
            完全炭化,热解后的最终产物为无定形碳,1000 ℃                              efficiency of its epoxy composites [J]. Carbon, 2007, 45: 1614-1621.
            热解时的残炭率为 55%。随着热解温度的升高,酚                           [13]  Liu X M, Yin X W, Kong L, et al. Fabrication and electromagnetic
                                                                   interference shielding effectiveness of carbon nanotube reinforced
            醛树脂热解炭的有序化程度逐渐提高,电导率增大,                                carbon fiber/pyrolytic carbon composites [J]. Carbon, 2014, 68:
            电磁屏蔽效能先增大后减小,900℃热解时的电磁屏                               501-510.
                                                               [14]  Wang Junkai (王军凯), Deng Xiangong (邓先功), Zhang Haijun (张
            蔽效能最高达 28.2 dB。                                        海军 ),  et al. Current research progress  of carbon  nanotubes
                                                                   reinforced carbon composite refractories [J]. Naihuo Cailiao (耐火材
                 (2)添加质量分数 0.5%FeCl 3 催化剂对于酚醛                      料), 2016, 50(2): 150-154.
            树脂 1000 ℃热解具有催化石墨化作用,使热解炭有                         [15]  Ding D H, Luo F, Zhou W C. Effects of thermal oxidation on
                                                                   electromagnetic interference shielding properties  of  SiC f/SiC
            序化程度得以提高,更为重要的是酚醛树脂热解炭                                 composites [J]. Ceramics International, 2013, 39: 4281-4286.
            中原位生成了大量吸波性能较好的多壁碳纳米管,                             [16]  Ma Y Z, Yin X W, Li Q. Effects of heat treatment temperature on
                                                                   microstructure and electromagnetic properties of ordered mesoporous
            形成导电网络,提高了总电磁屏蔽效能。添加质量                                 carbon [J]. Transactions  of Nonferrous Metals Society of China,
                                                                   2013, 23: 1652-1660.
            分数 0.5%FeCl 3 催化剂对 1500 ℃热解试样的电磁屏                  [17]  Wu Xiaoxian (吴小贤), Li Hongxia (李红霞), Liu Guoqi (刘国齐),
            蔽性能改善作用更明显,特别是在低频段。                                    et al. Effect of KCl on growth of carbon fibers during carbonization
                                                                   of phenolic resin [J]. Naihuo Cailiao (耐火材料), 2015, 49(1): 1-5.
                                                               [18]  Jiang H Y, Wang J G, Wu S Q, et al. The pyrolysis mechanism of
            参考文献:
                                                                   phenol formaldehyde resin [J]. Polymer Degradation and Stability,
            [1]   Gu Yingying (古映莹), Qiu Xiaoyong (邱小勇), Hu Qiming (胡启  2012, 97: 1527-1533.
                 明),  et al. Development of electromagnetic shielding material [J].   [19]  Zhu Boquan (朱伯铨), Wei Guoping (魏国平), Li Xiangcheng (李享
                 Materials Review (材料导报), 2005, 19(2): 53-56.      成), et al. Effect of carbonization temperature on microstructure and
            [2]   Li Y, Shen B, Pei  X L, et al. Ultrathin carbon foams for effective   oxidation resistance of carbon derived from doping modified phenol
                 electromagnetic interference shielding [J]. Carbon,  2016, 100:   resin  [J]. Journal  of the Chinese Ceramic Society (硅酸盐学报),
                 375-385.                                          2014, 42(6): 773-778.
            [3]   Kumar R, Dhakate S R, Saini P,  et al. Improved electromagnetic   [20]  Zhou Defeng (周德凤), Zhao Yanling (赵艳玲), Ma Yue (马越), et
                 interference shielding effectiveness of light weight carbon foam by   al. Effect of doping ZnCl 2 on the structure and properties of
                 ferrocene accumulation [J]. RSC Advances, 2013, 3: 4145-4151.   carbonized phenolic resin materials [J]. Acta Chimica Sinica (化学学
            [4]   Ding Shijing (丁世敬), Zhao Yuezhi (赵跃智), Ge Debiao (葛德彪).   报), 2004, 62(14): 1333-1338.
                 Research progress in electromagnetic shielding materials [J].   [21]  Ferrari A C,  Robertson J. Raman  spectroscopy of amorphous,
                 Materials Review (材料导报), 2008, 22(4): 30-33.      nanostructured, diamond-like carbon, and nanodiamond [J].
            [5]   Thomassin J M, Jerome C, Pardoen T, et al. Polymer/carbon based   Philosophical Transactions, 2004, 362: 2477.
                 composites as electromagnetic interference (EMI) shielding materials   [22]  Ma Y, Wang S, Chen Z H. Raman spectroscopy studies of the high-
                 [J]. Materials Science and Engineering, 2013, 74: 211-232.   temperature  evolution  of the free carbon phase in polycarbosilane
            [6]   Chung D D L.Electromagnetic interference shielding effectiveness of   derived SiC ceramics [J]. Ceramics International, 2010, 36: 2455-2459.
                 carbon materials [J]. Carbon, 2001, 39: 279-285.   [23]  Wang Xian (汪贤), Zhu Boquan (朱伯铨), Li Xiangcheng (李享成),
            [7]   Letellier M, Macutkevic J, Kuzhir P, et al. Electromagnetic properties   et al. Effect of Metal co-doping on  microstructure and oxidation
                 of model vitreous carbon foams [J]. Carbon, 2017,122: 217-227.   resistance of carbon derived from phenol resin [J]. Journal of the
            [8]   Kumar R, Singh  A P, Chand M,  et al. Improved microwave   Chinese Ceramic Society (硅酸盐学报), 2015, 43(3): 316-321.
                 absorption in lightweight resin-based carbon foam by decorating with   [24]  Kukovitsky E F, Lvov S G, Sainov N A,  VLS-growth  of carbon
                 magnetic and dielectric nanoparticles [J]. RSC Advances, 2014, 4:   nanotubes from the vapor [J]. Chemical Physics Letters, 2000, 317:
                 23476-23484.                                      65-70.
            [9]   Farhan S, Wang R, Li K.  Electromagnetic interference shielding   [25]  Qing Yuchang (卿玉长), Zhou Wancheng (周万城), Luo Fa (罗发),
                 effectiveness of carbon foam containing in situ grown silicon carbide   et al. Electromagnetic and absorbing properties of Multi-walled
                 nanowires [J]. Ceramics International, 2016, 42: 11330-11340.   carbon  nanotubes/epoxy-silicone coatings [J]. Journal of Inorganic
            [10]  Zhao M, Song H. Catalytic graphitization of phenolic resin [J].   Materials (无机材料学报), 2010, 25(2): 181-185
   36   37   38   39   40   41   42   43   44   45   46