Page 140 - 201808
P. 140
·1388· 精细化工 FINE CHEMICALS 第 35 卷
比表面积大,加速了材料与电解液之间的相互作用, 2013, 44(11): 1562-1569.
[9] Ju Bowei (鞠博伟), Wang Xianyou (王先友), Wei Qiliang (魏启亮),
一定程度上恶化了电池的循环性能。总之,喷雾干 et al. Synthesis and electrochemical performance of spherical high-
燥法和静电纺丝法混料均匀,操作简单,有望大规 voltage LiNi 0.5Mn 1.5O 4 [J]. Trans Nonferrous Met Soc China (中国有
色金属学报), 2013, 23(6): 1633-1639.
模应用于锂离子电池或钠离子电池正负极材料。 [10] Wu Feixiang, Li Xinhai, Wang Zhixing, et al. Low-temperature
synthesis of nano-micron Li 4Ti 5O 12 by an aqueous mixing technique
参考文献: and its excellent electrochemical performance [J]. J Power Sources,
2012, 202: 374-379.
[11] Hu Piao (胡飘), Zhong Shengkui (钟胜奎), Zhang Cheng (张诚), et
[1] Li Yehua, Wu Xianwen, Wang Suliang, et al. Surfactant-assisted al. Spray drying synthesis and electrochemical performance of
solvothermal synthesis of NiCo 2O 4 as an anode for lithium-ion lithium ion battery cathode materials LiNi 0.5Mn 1.5O 4 [J]. J Synthetic
batteries [J]. RSC Adv, 2017, 7: 36909-36916. cryctals (人工晶体学报), 2015, 44(8): 2184-2190.
[2] Xiang Yanhong, Sun Zhen, Li Jian, et al. Improved electrochemical [12] Luo Lei, Qiao Hui, Chen Ke, et al. Fabrication of electrospun
performance of Li 1.2Ni 0.2Mn 0.6O 2 cathode material for lithium ion ZnMn 2O 4 nanofibers as anode material for lithium-ion batteries [J].
batteries synthesized by the polyvinyl alcohol assisted sol-gel method Electrochim Acta, 2015, 177: 283-289.
[J]. Ceram Int, 2017, 43: 2320-2324. [13] Xiao Zhengwei, Zhang Yingjie, Wang Yifan. Synthesis of high-
[3] He Zhenjiang, Wang Zhixing, Huang Zimo, et al. A novel capacity LiNi 0.8Co 0.1Mn 0.1O 2 cathode by transition metal acetates [J].
architecture designed for lithium rich layered Trans Nonferrous Met Soc China, 2015, 25(5): 1568-1574.
Li[Li 0.2Mn 0.54Ni 0.13Co 0.13]O 2 oxide for lithium-ion batteries [J]. J [14] Hu Piao(胡飘). The synthesis,modification and performance research
Mater Chem A, 2015, 3: 16817-16823. of high-voltage LiNi 0.5Mn 1.5O 4 cathode material for lithium- ion
[4] Yi Tingfeng, Mei Jie, Zhu Yanrong. Key strategies for enhancing the battery [D]. Suzhou: Soochow University (苏州大学), 2016.
cycling stability and rate capacity of LiNi 0.5Mn 1.5O 4 as high-voltage [15] Feng Fushan (冯福山), Fang Haisheng (方海升), Yang Bin (杨斌),
cathode materials for high power lithium-ion batteries [J]. J Power et al. Effect of heating rate on crystal morphology and
Sources, 2016, 316: 85-105. electrochemical performance of high voltage cathode material
[5] Yi Tingfeng, Li Yanmei, Li Xiaoya, et al. Enhanced electrochemical LiNi 0.5Mn 1.5O 4 [J]. Trans Nonferrous Met Soc China (中国有色金属
property of FePO 4-coated LiNi 0.5Mn 1.5O 4 as cathode materials for 学报), 2016, 26(2): 347-353.
Li-ion battery [J]. Sci Bull, 2017, 62(14): 1004-1010. [16] Peng Wenjie (彭文杰), Li Xinhai (李新海), Wang Yunyan (王云燕),
[6] Hagh N M, Amatucci G G. A new solid-state process for synthesis of et al. Influence of morphology and structure of LiCoO 2 on its
LiMn 1.5Ni 0.5O 4−δ spinel [J]. J Power Sources, 2010, 195 (15): electrochemical performance [J]. J Central South University (Sci
5005-5012. Technol) (中南大学学报:自然科学版), 2004, 35(2): 222-227.
[7] Zhu Zhi (朱智), Qi Lu (其鲁), Li Wei (李卫), et al. Preparation and [17] Yin Yanping (尹艳萍), Lu Huaquan (卢华权), Wang Zhong (王忠),
electrochemical performance of 5 V LiNi 0.5Mn l5O 4 cathode material et al. Effect of different second particle size on rate capability of
by the composite co-precipitation method for high energy/high power Li-rich layered cathode materials Li 1.2Mn 0.54Ni 0.13Co 0.13O 2 [J]. Chin J
lithium ion secondary batteries [J]. Acta Phys -Chim Sin (物理化学 Inorg Chem, 2015, 31(10): 1966-1970.
学报), 2014, 30(4): 669-676. [18] Liu Yunjian (刘云建), Liu Zhiyuan (刘志远), Chen Xiaohua (陈效
[8] Liu Yan (刘艳), Huang Ruian (黄瑞安), Liu Shan (刘山), et al. 华), et al. Synthesis and performance of LiNi 0.5Mn 1.5O 4 cathodes [J].
Synthesis and electrochemical properties of LiNi 0.5Mn l. 6O 4 cathode J Central South University (Sci Technol ) (中南大学学报:自然科学
materials for lithium-ion batteries [J]. J Funct Mater (功能材料), 版), 2012, 43(11): 4248-4252.
(上接第 1381 页) 2015, 19(6): 1773-1782.
[23] Zheng H, Fang Shan, Tong Z K, et al. Porous silicon@polythiophene
[15] Sakuma M, Suzuki K, Hirayama M, et al. Reactions at the core-shell nanospheres for lithium-ion batteries[J]. Particle & Particle
electrode/electrolyte interface of all-solid-state lithium batteries Systems Characterization, 2016, 33(2): 75-81.
incorporating Li-M (M= Sn, Si) alloy electrodes and sulfide-based [24] Tao H C, Huang M, Fan L Z, et al. Effect of nitrogen on the
solid electrolytes[J]. Solid State Ionics, 2016, 285(1): 101-105.
[16] Kim H, Son Y, Park C, et al. Germanium silicon alloy anode material electrochemical performance of core-shell structured Si/C
capable of tunable overpotential by nanoscale Si segregation[J]. nanocomposites as anode materials for Li-ion batteries[J].
Nano Letters, 2015, 15(6): 4135-4142. Electrochimica Acta, 2013, 89(1): 394-399.
[17] Au M, He Y, Zhao Y, et al. Silicon and silicon-copper composite [25] Guo J C, Sun A, Chen X L, et al. Cyclability study of silicon-carbon
nanorods for anodes of Li-ion rechargeable batteries[J]. Journal of composite anodes for lithium-ion batteries using electrochemical
Power Sources, 2011, 196(22): 9640-9647. impedance spectroscopy[J]. Electrochimica Acta, 2011, 56(11):
[18] Zhou R, Fan R, Tian Z, et al. Preparation and characterization of 3981-3987.
core-shell structure Si/C composite with multiple carbon phases as [26] Xu Y H, Yin G P, Ma Y L, et al. Nanosized core/shell
anode materials for lithium ion batteries[J]. Journal of Alloys and silicon@carbon anode material for lithium ion batteries with
Compounds, 2016, 658(1): 91-97. polyvinylidene fluoride as carbon source[J]. Journal of Materials
[19] Park J B, Lee K H, Jeon Y J, et al. Si/C composite lithium-ion battery Chemistry, 2010, 20(16): 3216-3220.
anodes synthesized using silicon nanoparticles from porous silicon[J]. [27] Guo Z P, Wang J Z, Liu H K, et al. Study of silicon/polypyrrole
Electrochimica Acta, 2014, 133(6): 73-81. composite as anode materials for Li-ion batteries[J]. Journal of
[20] Rehman S, Guo S, Hou Y. Rational design of Si/SiO 2@ hierarchical Power Sources, 2005, 146(1): 448-451.
porous carbon spheres as efficient polysulfide reservoirs for high- [28] Street G, Clarke T, Krounbi M, et al. Preparation and characterization
performance Li-S battery[J]. Advanced Materials, 2016, 28(16): of neutral and oxidized polypyrrole films[J]. Molecular Crystals and
3167-3172. Liquid Crystals, 1982, 83(1): 253-264.
[21] Liu Z, Luo Y W, Zhou M J, et al. Enhanced performance of [29] Hessam G, Ming A, Ning C, et al. In situ electrochemical
yolk-shell structured Si-PPy composite as an anode for lithium ion lithiation/delithiation observation of individual amor- phous Si
batteries[J]. Electrochemistry, 2015, 83(12): 1067-1070. nanorods[J]. Acs Nano, 2011, 5(10): 7805-7811.
[22] Feng M Y, Tian J H, Xie H M, et al. Nano-silicon/polyaniline [30] Zhang T, Gao J, Fu L J, et al. Natural graphite coated by Si
composites with an enhanced reversible capacity as anode materials nanoparticles as anode materials for lithium ion batteries[J]. Journal
for lithium ion batteries[J]. Journal of Solid State Electrochemistry, of Materials Chemistry, 2007, 17(13): 1321-1325.