Page 140 - 201808
P. 140

·1388·                            精细化工   FINE CHEMICALS                                  第 35 卷

            比表面积大,加速了材料与电解液之间的相互作用,                                2013, 44(11): 1562-1569.
                                                               [9]   Ju Bowei (鞠博伟), Wang Xianyou (王先友), Wei Qiliang (魏启亮),
            一定程度上恶化了电池的循环性能。总之,喷雾干                                 et al. Synthesis and electrochemical performance of spherical high-
            燥法和静电纺丝法混料均匀,操作简单,有望大规                                 voltage LiNi 0.5Mn 1.5O 4 [J]. Trans Nonferrous Met Soc China (中国有
                                                                   色金属学报), 2013, 23(6): 1633-1639.
            模应用于锂离子电池或钠离子电池正负极材料。                              [10]  Wu Feixiang, Li  Xinhai, Wang Zhixing,  et al.  Low-temperature
                                                                   synthesis of nano-micron Li 4Ti 5O 12 by an aqueous mixing technique
            参考文献:                                                  and its excellent electrochemical performance [J]. J Power Sources,
                                                                   2012, 202: 374-379.
                                                               [11]  Hu Piao (胡飘), Zhong Shengkui (钟胜奎), Zhang Cheng (张诚), et
            [1]   Li Yehua, Wu Xianwen, Wang Suliang,  et al. Surfactant-assisted   al. Spray drying synthesis and electrochemical performance of
                 solvothermal synthesis of NiCo 2O 4 as an anode for lithium-ion   lithium ion battery cathode materials LiNi 0.5Mn 1.5O 4 [J]. J Synthetic
                 batteries [J]. RSC Adv, 2017, 7: 36909-36916.     cryctals (人工晶体学报), 2015, 44(8): 2184-2190.
            [2]   Xiang Yanhong, Sun Zhen, Li Jian, et al. Improved electrochemical   [12]  Luo Lei, Qiao Hui, Chen Ke,  et al. Fabrication of electrospun
                 performance of Li 1.2Ni 0.2Mn 0.6O 2 cathode material for lithium ion   ZnMn 2O 4 nanofibers as anode material for lithium-ion batteries [J].
                 batteries synthesized by the polyvinyl alcohol assisted sol-gel method   Electrochim Acta, 2015, 177: 283-289.
                 [J]. Ceram Int, 2017, 43: 2320-2324.          [13]  Xiao Zhengwei, Zhang  Yingjie, Wang  Yifan. Synthesis of high-
            [3]   He Zhenjiang, Wang Zhixing, Huang Zimo,  et al. A novel   capacity LiNi 0.8Co 0.1Mn 0.1O 2 cathode by transition metal acetates [J].
                 architecture  designed  for  lithium  rich  layered  Trans Nonferrous Met Soc China, 2015, 25(5): 1568-1574.
                 Li[Li 0.2Mn 0.54Ni 0.13Co 0.13]O 2 oxide for lithium-ion batteries [J]. J   [14] Hu Piao(胡飘). The synthesis,modification and performance research
                 Mater Chem A, 2015, 3: 16817-16823.               of high-voltage LiNi 0.5Mn 1.5O 4 cathode material for lithium- ion
            [4]   Yi Tingfeng, Mei Jie, Zhu Yanrong. Key strategies for enhancing the   battery [D]. Suzhou: Soochow University (苏州大学), 2016.
                 cycling stability and rate capacity of LiNi 0.5Mn 1.5O 4 as high-voltage   [15]  Feng Fushan (冯福山), Fang Haisheng (方海升), Yang Bin (杨斌),
                 cathode materials for high power lithium-ion batteries [J]. J Power   et al. Effect of heating rate on crystal  morphology and
                 Sources, 2016, 316: 85-105.                       electrochemical performance of high voltage cathode  material
            [5]   Yi Tingfeng, Li Yanmei, Li Xiaoya, et al. Enhanced electrochemical   LiNi 0.5Mn 1.5O 4 [J]. Trans Nonferrous Met Soc China (中国有色金属
                 property of  FePO 4-coated LiNi 0.5Mn 1.5O 4 as cathode materials for   学报), 2016, 26(2): 347-353.
                 Li-ion battery [J]. Sci Bull, 2017, 62(14): 1004-1010.     [16]  Peng Wenjie (彭文杰), Li Xinhai (李新海), Wang Yunyan (王云燕),
            [6]   Hagh N M, Amatucci G G. A new solid-state process for synthesis of   et al.  Influence of morphology and  structure of LiCoO 2 on its
                 LiMn 1.5Ni 0.5O 4−δ  spinel [J]. J Power Sources, 2010, 195 (15):   electrochemical performance [J]. J  Central South University (Sci
                 5005-5012.                                        Technol) (中南大学学报:自然科学版), 2004, 35(2): 222-227.
            [7]   Zhu Zhi (朱智), Qi Lu (其鲁), Li Wei (李卫), et al. Preparation and   [17] Yin Yanping (尹艳萍), Lu Huaquan (卢华权), Wang Zhong (王忠),
                 electrochemical performance of 5 V LiNi 0.5Mn l5O 4 cathode material   et al. Effect of different second particle size on rate  capability of
                 by the composite co-precipitation method for high energy/high power   Li-rich layered cathode materials Li 1.2Mn 0.54Ni 0.13Co 0.13O 2 [J]. Chin J
                 lithium ion secondary batteries [J]. Acta Phys -Chim Sin (物理化学  Inorg Chem, 2015, 31(10): 1966-1970.
                 学报), 2014, 30(4): 669-676.                    [18]  Liu Yunjian (刘云建), Liu Zhiyuan (刘志远), Chen Xiaohua (陈效
            [8]   Liu Yan (刘艳), Huang Ruian (黄瑞安), Liu Shan (刘山),  et al.   华), et al. Synthesis and performance of LiNi 0.5Mn 1.5O 4 cathodes [J].
                 Synthesis and electrochemical properties of LiNi 0.5Mn l. 6O 4 cathode   J Central South University (Sci Technol ) (中南大学学报:自然科学
                 materials for lithium-ion batteries [J]. J Funct Mater (功能材料),   版), 2012, 43(11): 4248-4252.


            (上接第 1381 页)                                           2015, 19(6): 1773-1782.
                                                               [23]  Zheng H, Fang Shan, Tong Z K, et al. Porous silicon@polythiophene
            [15]  Sakuma M, Suzuki K, Hirayama  M,  et al. Reactions at the   core-shell nanospheres for lithium-ion batteries[J]. Particle & Particle
                 electrode/electrolyte  interface of all-solid-state lithium batteries   Systems Characterization, 2016, 33(2): 75-81.
                 incorporating Li-M (M= Sn, Si) alloy electrodes and sulfide-based   [24]  Tao H C, Huang M, Fan L Z,  et al. Effect of  nitrogen on  the
                 solid electrolytes[J]. Solid State Ionics, 2016, 285(1): 101-105.
            [16]  Kim H, Son Y, Park C, et al. Germanium silicon alloy anode material   electrochemical performance of  core-shell structured Si/C
                 capable of tunable overpotential by nanoscale Si segregation[J].   nanocomposites as anode  materials for Li-ion batteries[J].
                 Nano Letters, 2015, 15(6): 4135-4142.             Electrochimica Acta, 2013, 89(1): 394-399.
            [17]  Au M, He Y, Zhao Y,  et al. Silicon and silicon-copper composite   [25]  Guo J C, Sun A, Chen X L, et al. Cyclability study of silicon-carbon
                 nanorods for anodes of Li-ion rechargeable batteries[J]. Journal of   composite anodes for lithium-ion batteries using electrochemical
                 Power Sources, 2011, 196(22): 9640-9647.          impedance spectroscopy[J]. Electrochimica Acta, 2011, 56(11):
            [18]  Zhou R, Fan R, Tian Z,  et al. Preparation and characterization of   3981-3987.
                 core-shell  structure Si/C composite with multiple carbon  phases as   [26]  Xu Y H, Yin  G P, Ma Y L,  et al. Nanosized core/shell
                 anode materials for lithium ion batteries[J]. Journal  of  Alloys and   silicon@carbon anode material for lithium ion batteries with
                 Compounds, 2016, 658(1): 91-97.                   polyvinylidene fluoride as carbon source[J]. Journal of  Materials
            [19]  Park J B, Lee K H, Jeon Y J, et al. Si/C composite lithium-ion battery   Chemistry, 2010, 20(16): 3216-3220.
                 anodes synthesized using silicon nanoparticles from porous silicon[J].   [27]  Guo Z P, Wang J  Z, Liu H K,  et al. Study of silicon/polypyrrole
                 Electrochimica Acta, 2014, 133(6): 73-81.         composite as  anode  materials for Li-ion batteries[J]. Journal of
            [20]  Rehman S, Guo S, Hou Y. Rational design of Si/SiO 2@ hierarchical   Power Sources, 2005, 146(1): 448-451.
                 porous carbon spheres as efficient polysulfide reservoirs  for high-   [28]  Street G, Clarke T, Krounbi M, et al. Preparation and characterization
                 performance  Li-S battery[J]. Advanced Materials, 2016, 28(16):   of neutral and oxidized polypyrrole films[J]. Molecular Crystals and
                 3167-3172.                                        Liquid Crystals, 1982, 83(1): 253-264.
            [21]  Liu Z, Luo Y W, Zhou M J,  et al. Enhanced performance of   [29]  Hessam  G, Ming A, Ning C,  et al. In situ electrochemical
                 yolk-shell structured Si-PPy composite as an anode for lithium ion   lithiation/delithiation observation  of  individual amor- phous  Si
                 batteries[J]. Electrochemistry, 2015, 83(12): 1067-1070.   nanorods[J]. Acs Nano, 2011, 5(10): 7805-7811.
            [22]  Feng M Y, Tian J H,  Xie  H M,  et al. Nano-silicon/polyaniline   [30]  Zhang T, Gao J,  Fu L J,  et al.  Natural graphite coated by Si
                 composites with an enhanced reversible capacity as anode materials   nanoparticles as anode materials for lithium ion batteries[J]. Journal
                 for lithium ion batteries[J]. Journal of Solid State Electrochemistry,     of Materials Chemistry, 2007, 17(13): 1321-1325.
   135   136   137   138   139   140   141   142   143   144   145