Page 69 - 201809
P. 69

第 9 期                       张   通,等:  酶解玉米秸秆残渣制备聚氨酯硬质泡沫                                 ·1495·


                                              –1
            为—OH 的弯曲振动吸收峰,1220 cm 处为愈创木                        约为 50%~55%,主要是多元醇骨架及其木质素衍生
                                                –1
            环中的 C==O 伸缩振动吸收峰,1120 cm 附近为紫                      物的热解    [16] 。另外,添加木质素的聚氨酯泡沫热分
            丁香基 C==O 伸缩振动吸收峰,1030 cm              –1  为直链    解温度要明显高于未添加木质素的泡沫,说明在热
                                        –1
            C—C 伸缩振动吸收峰,830 cm 为苯环上 C—H 面                      分解过程中,木质素的耐热性起到了阻碍聚氨酯泡
            外弯曲振动吸收峰,以上吸收峰表现出典型的木质                             沫分解的作用,提高了聚氨酯泡沫的耐热性能。
            素化学结构特征        [14] 。而在木质素基聚氨酯泡沫的谱
            图中,除了上述木质素材料特征吸收峰外,在 3300、                         3   结论
                                –1
            2280、1070 和 750 cm 处出现了几个较为明显的吸                        本研究以酶解玉米秸秆残渣为原料,通过木质
                              –1
            收峰,其中 3300 cm 处为—NH 伸缩振动吸收峰,                       素的精制、液化后进行聚氨酯泡沫的合成。当木质
                   –1
            2280 cm 属于异氰酸酯中的—N==C==O 非对称伸缩振                    素液化产物添加量为聚醚多元醇质量的 47%时,制
            动峰,该峰的存在说明异氰酸酯单体未完全反应                     [15] ,   备的聚氨酯泡沫的依然保持较佳性能,芯密度和压
                    –1
            1070 cm 处属于聚氨酯泡沫中的醚键 C—O—C,                        缩强度分别为 48.6 kg/m 和 212 kPa,满足相应国家
                                                                                    3
                   –1
            750 cm 归属于聚氨酯泡沫中的 CONH 弯曲振动吸
                                                               标准。
            收峰。
                 木质素液化产物添加量分别为 0 和 47%的聚氨                      参考文献:
            酯泡沫的热失重曲线见图 5。两种泡沫的热分解过                            [1]   Fischer G, Schrattenholzer L. Global bioenergy potentials through
                                                                   2050[J]. Biomass and Bioenergy, 2001, 20(3): 151-159.
            程极为相似,大致分为两个失重阶段:第一个失重                             [2]   Kumar R,  Tabatabaei  M, Karimi  K,  et al. Recent updates on
            阶段为 200~400 ℃,失重率为 35%~40%,主要是聚                        lignocellulosic biomass derived ethanol-A review[J]. Biofuel
                                                                   Research Journal, 2016, 3(1): 347-356.
            氨酯硬段的分解;第二阶段为 400~600 ℃,失重率                        [3]   Brethauer S, Wyman C E. Review: Continuous  hydrolysis and
                                                                   fermentation for  cellulosic ethanol production[J]. Bioresource
                                                                   Technology, 2010, 101(13): 4862-4874.
                                                               [4]   Wang Wen (王闻), Zhuang Xinshu (庄新姝), Yuan Zhenhong (袁振
                                                                   宏 ),  et al. Present situation and  prospect on the industrial
                                                                   development of cellulosic fuel ethanol[J]. Chemistry and Industry of
                                                                   Forest Products (林产化学与工业), 2014, 34(4): 144-150.
                                                               [5]   Cheng Xiansu (程贤甦). Extraction methods of enzymatic hydrolysis
                                                                   lignin: CN1763208[P]. 2006-04-26.
                                                               [6]   Jia Ling (贾玲), Feng Xia (冯霞), Wang  Yafei (王亚飞),  et al.
                                                                   Extraction of lignin from corncob with organic acid aqueous solution
                                                                   and its characterization[J]. Fine Chemicals (精细化工), 2013, 30(6):
                                                                   628-633.
                                                               [7]  Zhang Zhiming (张志鸣), Zhou Mingsong (周明松), Yang Dongjie
                                                                   (杨东杰),  et al. Preparation and performance of high temperature
                                                                   sulfomethylated alkali lignin dye disperant[J]. Fine Chemicals (精细
                                                                   化工), 2014, 31(12): 1500-1505.

                                                               [8]   Zhu Lvmin (朱吕民). Polyurethane[M]. Nanjing:Jiangsu Science
            图 4   精制木质素及木质素液化产物添加量为 47%的聚                          and Technology Press, 2002: 2-9.
                                                               [9]   Sun Gang (孙刚), Liu  Yu (刘预), Feng  Fang (冯芳),  et al.
                  氨酯泡沫的红外谱图                                        Development of research on polyurethane foams[J].  Materials
            Fig. 4    IR spectra of lignin and lignin-based polyurethane   Review (材料导报), 2006, 20(3): 29-36.
                   foam with 47% liquefied lignin content      [10]  Jiang Tingda (蒋挺大). Lignin[M]. Beijing: Chemical Industry Press,
                                                                   2008: 19-41.
                                                               [11]  Zakzeski J, Bruijnincx P C A, Jongerius A L,  et al. The catalytic
                                                                   valorization of lignin for the production of renewable chemicals[J].
                                                                   Chemical Review, 2010, 110(6): 3552-3599.
                                                               [12]  Wahyudiono, Sasaki M, Goto M. Recovery of phenolic compounds
                                                                   through the decomposition of lignin in near and supercritical
                                                                   water[J].  Chemical  Engineering  and  Processing:  Process
                                                                   Intensification, 2008, 47(9/10): 1609-1619.
                                                               [13]  Ren Xueyong (任学勇), Chang Jianmin (常建民), Gou Jinsheng (苟
                                                                   进胜), et al. Research and development trends of direct liquefaction
                                                                   of wood  biomass[J]. World  Forestry Research (世界林业研究),
                                                                   2009, 22(5): 62-65.
                                                               [14]  Shen D, Gu S, Luo K H,  et al.  The pyrolytic degradation of
                                                                   wood-derived lignin from pulping process[J]. Bioresource
                                                                   Technology, 2010, 101(15): 6136-6146.
                                                               [15]  He Kai (何凯), Chen Keke (陈可可), Guo Ming (郭明). Preparation,

                                                                   characterization, and properties of lignin based, rigid  polyurethane
            图 5   木质素液化产物添加量分别为 0 和 47%的聚氨酯泡                       foam materials[J]. Journal of Zhejiang A&F University (浙江农林大
                                                                   学学报), 2012, 29(2): 203-209.
                  沫的热失重曲线                                      [16]  Kurimoto Y, Takeda M, Doi S, et al. Network structures and thermal
            Fig. 5    TGA curves of polyurethane foams with 0 and 47%   properties of polyurethane films prepared from liquefied wood[J].
                   liquified lignin contents                       Bioresource Technology, 2001, 77(1): 33-40.
   64   65   66   67   68   69   70   71   72   73   74