Page 64 - 201809
P. 64

·1490·                            精细化工   FINE CHEMICALS                                  第 35 卷

            应液由无色变为绿色,说明生成了 Cr(OH) 3,溶液中                       65%,反应温度为 25  ℃,还原剂为甲酸时,9 min
            存在 Cr(Ⅲ)。                                          可实现水体中 Cr(Ⅵ)的移除,高效地解决了重金属
                                        [7]
                 同样以甲酸为还原剂,He 等则以 Cu-有机阳                       污染问题,其展现出取代 Pb、Pt NPs 等贵金属催化
            离子环作为催化剂,常温下获得了 75%的 Cr(Ⅵ)还                        剂,用于催化还原处理含 Cr(Ⅵ)废水的潜力。
            原率,魏应祥       [19] 等以膨胀石墨负载 Pd 纳米颗粒为
                                                               参考文献:
            催化剂,在常温下,Cr(Ⅵ)的还原率不到 40%,催
                                                               [1]   Dandapat A, Jana D, De G. Pd nanoparticles supported mesoporous
            化剂的活性很低。复合材料 Fe@GE-Cu 0.65 能使 Cr(Ⅵ)                    γ-Al 2O 3 film as a reusable catalyst for reduction of toxic Cr(Ⅵ) to
            几乎 100%还原,说明复合材料 Fe@GE-Cu 0.65 在常                      Cr(Ⅲ) in aqueous solution[J]. Applied Catalysis A: General, 2011,
                                                                   396(1/2): 34-39.
            温下催化性能更好。
                                                               [2]   Smith A H, Steinmaus C M. Health effects of arsenic and chromium
            2.2.3  Cu 含量对催化还原 Cr(Ⅵ)的影响                             in drinking water: Recent human findings[J]. Annual ReⅥew of
                 本文对催化还原反应进行了动力学曲线拟合,                              Public Health, 2009, 30: 107-122.
                                                               [3]   Dinda D, Gupta A, Saha S K. Removal of toxic Cr (Ⅵ) by UV-active
            结果发现,按照准一级动力学曲线进行拟合能够较                                 functionalized graphene oxide for water purification[J]. Journal of
            好地描述 Cr(Ⅵ)浓度的变化趋势。考察了不同 Cu                             Materials Chemistry A, 2013, 1(37): 11221-11228.
                                                               [4]   Ⅵncent J B. Elucidating a biological role for chromium at a molecular
            含量对催化还原 Cr(Ⅵ)的影响,结果如图 7 所示。                            level[J]. Accounts of Chemical Research, 2000, 33(7): 503-510.
            可以看到,随着 Cu 含量的增大,反应速率常数呈                           [5]   Yadav M, Xu Q. Catalytic chromium reduction using formic acid and
            现先增加后减小的趋势,在 Cu 质量分数为 65%时,                            metal nanoparticles immobilized in a  metal-organic framework[J].
                                                                   Chemical Communications, 2013, 49(32): 3327-3329.
                                 –1
            k 达到最佳值(0.48 min )。这是因为铜含量少,导                      [6]   Borah B J, Saikia H, Bharali P. Reductive conversion of Cr (Ⅵ) to
            致 Fe@GE 的含量相对增加,进而增加了催化反应                              Cr(Ⅲ)  over bimetallic cuni nanocrystals at room temperature[J].
                                                                   New Journal of Chemistry, 2014, 38(7): 2748-2751.
            的活性吸附中心位点,促进了催化反应的进行;而                             [7]   He X L, Liu Y P, Gong K N, et al. Copper-organic cationic ring with
            当 Fe@GE 的含量过大时,则会造成起催化作用的                              an inserted arsenic-vanadium polyanionic cluster for efficient
                                                                   catalytic Cr(Ⅵ) reduction using formic acid[J]. Inorganic Chemistry,
            活性物种 Cu 纳米颗粒数量减少,从而削弱了催化反
                                                                   2015, 54(4): 1215-1217.
            应的活性位点,降低了催化剂的催化能力。所以,Cu                           [8]   Wei L L, Gu R, Lee J M. Highly efficient reduction of hexavalent
            的质量分数为 65%时,Fe@GE-Cu 的催化效果最佳。                          chromium on amino-functionalized palladium nanowires[J]. Applied
                                                                   Catalysis B: EnⅥronmental, 2015, 176/177: 325-330.
                                                               [9]   Sun Y P, Li X Q, Zhang W X, et al. A method for the preparation of
                                                                   stable dispersion of zero-valent iron nanoparticles[J]. Colloids and
                                                                   Surfaces A: Physicochemical and Engineering Aspects, 2007,
                                                                   308(1/2/3): 60-66.
                                                               [10]  Wang C B, Zhang W. Synthesizing nanoscale iron particles for rapid
                                                                   and complete dechlorination of  TCE  and PCBs[J]. Environmental
                                                                   Science & Technology, 1997, 31(7): 2154-2156.
                                                               [11]  Sun Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon
                                                                   sources[J]. Nature, 2010, 468(7323): 549-552.
                                                               [12]  Wang X, Zhang Y, Zhi C, et al. Three-dimensional strutted graphene
                                                                   grown by substrate-free sugar blowing for high-power-density
                                                                   supercapacitors[J]. Nature Communications, 2013, 4(2905): 1-8.
                                                               [13]  Ferrari A C, Meyer J C, Scardaci V,  et al. Raman spectrum of
                                                                   graphene and graphene layers[J]. Physical Review Letters, 2006,

            图 7   催化剂 Fe@GE-Cu 中 Cu 质量分数对反应速率常数的                   97(18): 187401-187404.
                                                               [14]  Liu L,  Wang H,  Zhou Z,  et al. A facile novel preparation of
                 影响
                                                                   three-dimensional  Ni@graphene by catalyzed glucose blowing for
            Fig. 7    Rate constant for the reduction of Cr(Ⅵ) over   high-performance supercapacitor electrodes[J]. RSC Advances, 2015,
                    different content of copper catalysts          5(91): 74463-74466.
                                                               [15]  Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene
            3   结论                                                 nanoribbon semiconductors[J]. Science, 2008, 319(5867): 1229-1232.
                                                               [16]  Gao Z, Liu J, Xu F, et al. One-pot synthesis of graphene–cuprous
                                                                   oxide composite with enhanced photocatalytic activity[J]. Solid State
                 采取一步煅烧法原位制备了磁性复合材料                                Sciences, 2012, 14(2): 276-280.
            Fe@GE,并经低温水热法制备了 Fe@GE-Cu 催化                       [17]  Thanh Hieu N, Dai Lam T, Hung Manh D,  et al. Facile  and
            剂,通过 XRD、UV-vis、FESEM 对催化剂进行了表                         solvent-free routes for  the synthesis of size-controllable Fe 3O 4
                                                                   nanoparticles[J]. Advances in Natural Sciences: Nanoscience  and
            征。结果表明,通过一步煅烧法形成了以金属 Fe 为                              Nanotechnology, 2010,1(3): 1-7.
            核并在其表面包裹有少层石墨烯膜的三维空心核-                             [18]  Kalidindi S B, Sanyal U, Jagirdar  B R. Nanostructured Cu and
                                                                   Cu@Cu 2O core shell catalysts for hydrogen generation from
            壳结构,复合材料具有较少的缺陷和较高的石墨化                                 ammonia-borane[J]. Physical Chemistry Chemical Physics, 2008,
            程度。通过催化还原有毒 Cr(Ⅵ)来考察复合材料                               10(38): 5870-5874.
            Fe@GE-Cu 的催化性能,结果表明,当催化剂与重                         [19]  Wei Yinxiang, Tu Weixia. Reduction of hexavalent chromium over
                                                                   the expanded graphite supported palladium nanocatalyst[J]. Chem J
            铬酸钾质量比为 1∶1,复合物中 Cu 的质量分数为                             Chin Univ, 2014, 35(11): 2397-2402.
   59   60   61   62   63   64   65   66   67   68   69