Page 64 - 201809
P. 64
·1490· 精细化工 FINE CHEMICALS 第 35 卷
应液由无色变为绿色,说明生成了 Cr(OH) 3,溶液中 65%,反应温度为 25 ℃,还原剂为甲酸时,9 min
存在 Cr(Ⅲ)。 可实现水体中 Cr(Ⅵ)的移除,高效地解决了重金属
[7]
同样以甲酸为还原剂,He 等则以 Cu-有机阳 污染问题,其展现出取代 Pb、Pt NPs 等贵金属催化
离子环作为催化剂,常温下获得了 75%的 Cr(Ⅵ)还 剂,用于催化还原处理含 Cr(Ⅵ)废水的潜力。
原率,魏应祥 [19] 等以膨胀石墨负载 Pd 纳米颗粒为
参考文献:
催化剂,在常温下,Cr(Ⅵ)的还原率不到 40%,催
[1] Dandapat A, Jana D, De G. Pd nanoparticles supported mesoporous
化剂的活性很低。复合材料 Fe@GE-Cu 0.65 能使 Cr(Ⅵ) γ-Al 2O 3 film as a reusable catalyst for reduction of toxic Cr(Ⅵ) to
几乎 100%还原,说明复合材料 Fe@GE-Cu 0.65 在常 Cr(Ⅲ) in aqueous solution[J]. Applied Catalysis A: General, 2011,
396(1/2): 34-39.
温下催化性能更好。
[2] Smith A H, Steinmaus C M. Health effects of arsenic and chromium
2.2.3 Cu 含量对催化还原 Cr(Ⅵ)的影响 in drinking water: Recent human findings[J]. Annual ReⅥew of
本文对催化还原反应进行了动力学曲线拟合, Public Health, 2009, 30: 107-122.
[3] Dinda D, Gupta A, Saha S K. Removal of toxic Cr (Ⅵ) by UV-active
结果发现,按照准一级动力学曲线进行拟合能够较 functionalized graphene oxide for water purification[J]. Journal of
好地描述 Cr(Ⅵ)浓度的变化趋势。考察了不同 Cu Materials Chemistry A, 2013, 1(37): 11221-11228.
[4] Ⅵncent J B. Elucidating a biological role for chromium at a molecular
含量对催化还原 Cr(Ⅵ)的影响,结果如图 7 所示。 level[J]. Accounts of Chemical Research, 2000, 33(7): 503-510.
可以看到,随着 Cu 含量的增大,反应速率常数呈 [5] Yadav M, Xu Q. Catalytic chromium reduction using formic acid and
现先增加后减小的趋势,在 Cu 质量分数为 65%时, metal nanoparticles immobilized in a metal-organic framework[J].
Chemical Communications, 2013, 49(32): 3327-3329.
–1
k 达到最佳值(0.48 min )。这是因为铜含量少,导 [6] Borah B J, Saikia H, Bharali P. Reductive conversion of Cr (Ⅵ) to
致 Fe@GE 的含量相对增加,进而增加了催化反应 Cr(Ⅲ) over bimetallic cuni nanocrystals at room temperature[J].
New Journal of Chemistry, 2014, 38(7): 2748-2751.
的活性吸附中心位点,促进了催化反应的进行;而 [7] He X L, Liu Y P, Gong K N, et al. Copper-organic cationic ring with
当 Fe@GE 的含量过大时,则会造成起催化作用的 an inserted arsenic-vanadium polyanionic cluster for efficient
catalytic Cr(Ⅵ) reduction using formic acid[J]. Inorganic Chemistry,
活性物种 Cu 纳米颗粒数量减少,从而削弱了催化反
2015, 54(4): 1215-1217.
应的活性位点,降低了催化剂的催化能力。所以,Cu [8] Wei L L, Gu R, Lee J M. Highly efficient reduction of hexavalent
的质量分数为 65%时,Fe@GE-Cu 的催化效果最佳。 chromium on amino-functionalized palladium nanowires[J]. Applied
Catalysis B: EnⅥronmental, 2015, 176/177: 325-330.
[9] Sun Y P, Li X Q, Zhang W X, et al. A method for the preparation of
stable dispersion of zero-valent iron nanoparticles[J]. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 2007,
308(1/2/3): 60-66.
[10] Wang C B, Zhang W. Synthesizing nanoscale iron particles for rapid
and complete dechlorination of TCE and PCBs[J]. Environmental
Science & Technology, 1997, 31(7): 2154-2156.
[11] Sun Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon
sources[J]. Nature, 2010, 468(7323): 549-552.
[12] Wang X, Zhang Y, Zhi C, et al. Three-dimensional strutted graphene
grown by substrate-free sugar blowing for high-power-density
supercapacitors[J]. Nature Communications, 2013, 4(2905): 1-8.
[13] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of
graphene and graphene layers[J]. Physical Review Letters, 2006,
图 7 催化剂 Fe@GE-Cu 中 Cu 质量分数对反应速率常数的 97(18): 187401-187404.
[14] Liu L, Wang H, Zhou Z, et al. A facile novel preparation of
影响
three-dimensional Ni@graphene by catalyzed glucose blowing for
Fig. 7 Rate constant for the reduction of Cr(Ⅵ) over high-performance supercapacitor electrodes[J]. RSC Advances, 2015,
different content of copper catalysts 5(91): 74463-74466.
[15] Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene
3 结论 nanoribbon semiconductors[J]. Science, 2008, 319(5867): 1229-1232.
[16] Gao Z, Liu J, Xu F, et al. One-pot synthesis of graphene–cuprous
oxide composite with enhanced photocatalytic activity[J]. Solid State
采取一步煅烧法原位制备了磁性复合材料 Sciences, 2012, 14(2): 276-280.
Fe@GE,并经低温水热法制备了 Fe@GE-Cu 催化 [17] Thanh Hieu N, Dai Lam T, Hung Manh D, et al. Facile and
剂,通过 XRD、UV-vis、FESEM 对催化剂进行了表 solvent-free routes for the synthesis of size-controllable Fe 3O 4
nanoparticles[J]. Advances in Natural Sciences: Nanoscience and
征。结果表明,通过一步煅烧法形成了以金属 Fe 为 Nanotechnology, 2010,1(3): 1-7.
核并在其表面包裹有少层石墨烯膜的三维空心核- [18] Kalidindi S B, Sanyal U, Jagirdar B R. Nanostructured Cu and
Cu@Cu 2O core shell catalysts for hydrogen generation from
壳结构,复合材料具有较少的缺陷和较高的石墨化 ammonia-borane[J]. Physical Chemistry Chemical Physics, 2008,
程度。通过催化还原有毒 Cr(Ⅵ)来考察复合材料 10(38): 5870-5874.
Fe@GE-Cu 的催化性能,结果表明,当催化剂与重 [19] Wei Yinxiang, Tu Weixia. Reduction of hexavalent chromium over
the expanded graphite supported palladium nanocatalyst[J]. Chem J
铬酸钾质量比为 1∶1,复合物中 Cu 的质量分数为 Chin Univ, 2014, 35(11): 2397-2402.