Page 59 - 201809
P. 59
第 9 期 曾小星,等: Bi 24 O 31 Br 10 /BiOBr 的控制合成及其光催化性能 ·1485·
assembly strategy[J]. Nanoscale, 2014, 6(1): 145-150. 346(15): 311-316
[12] Zhao Y, Yu T, Tan X, et al. SDS-assisted solvothermal synthesis of [26] Wang J L, Yu Y, Zhang L Z. et al. Highly efficient photocatalytic
rose-like BiOBr partially enclosed by {111} facets and enhanced removal of sodium pentachlorophenate with Bi 3O 4Br under visible
visible-light photocatalytic activity[J]. Dalton Transactions, 2015, 44 light[J]. Applied Catalysis B: Environmental, 2013, 112 (5): 136-137.
(47): 20475-20483. [27] Xiao X, Hu R P, Liu C, et al. Facile microwave synthesis of novel
[13] Huo Y N, Zhang J, Miao M, et al. Solvothermal synthesis of hierarchical Bi 24O 31Br 10 nanoflakes with excellent visible light
flower-like BiOBr microspheres with highly visible-light photocatalytic performance for the degradation of tetracycline
photocatalytic performances[J]. Applied Catalysis B: Environmental, hydrochloride[J]. Chemical Engineering Journal, 2013, 225(1):
2012, 111(12): 334-341. 790-797.
[14] Feng Y C, Li L, Li J W, et al. Synthesis of mesoporous BiOBr 3D [28] Li F T, Wang Q, Ran J R, et al. Ionic liquid self-combustion synthesis
microspheres and their photodecomposition for toluene[J]. Journal of of BiOBr/Bi 24O 31Br 10 heterojunctions with exceptional visible-light
Hazardous Materials, 2011, 192(2): 538-544. photocatalytic performances[J]. Nanoscale, 2015,7(3): 1116-1126.
[15] Zhang J, Shi F J, Lin J, et al. Self-assembled 3D architectures of [29] Peng Y, Yu P P, Chen Q G, et al. Facile fabrication of Bi 12O 17Br 2/
BiOBr as a visible light-driven photocatalyst[J]. Chemistry of Bi 24O 31Br 10 Type II heterostructures with high visible photocatalytic
Materials, 2008, 20(13): 2937-2941. activity[J]. Journal of Physical Chemistry C, 2015,119(23):
[16] Fan Z, Zhao Y B, Zhai W, et al. Facet-dependent performance of 13032-13040.
BiOBr for photocatalytic reduction of Cr (Ⅵ)[J]. RSC Advances, [30] Zeng X X , Wan Y Q , Gong X F, et al. Additive dependent synthesis
2016, 6(3): 2028-2031. of bismuth oxybromide composites for photocatalytic removal of the
[17] Zhang D, Li J, Wang Q G, et al. High (001) facets dominated BiOBr antibacterial agent ciprofloxacin and mechanism insight[J]. RSC
lamellas: facile hydrolysis preparation and selective visible-light Advances, 2017, 7(58): 36269-36278.
photocatalytic activity [J]. Journal of Materials Chemistry A, [31] Di J, Xia J X, Ji M X, et al. Controllable synthesis of Bi 4O 5Br 2
2013,1(30): 8622-8629. ultrathin nanosheets for photocatalytic removal of ciprofloxacin and
[18] Li Y L, Liu Y M, Wang J S, et al. Titanium alkoxide induced mechanism insight[J]. Journal of Materials Chemistry A, 2015, 3(29):
BiOBr-Bi 2WO 6 mesoporous nanosheet composites with much 15108-15118.
enhanced photocatalytic activity[J]. Journal of Materials Chemistry [32] Walowit Eric, Mccarthy Cornelius J, Berns Roy S. An algorithm for
A, 2013, 1(27): 7949-7956. the optimiaztion of Kubelka-Munk absorption and scattering
[19] Yan T J, Yan X Y, Guo R R, et al. Ag/AgBr/BiOBr hollow coeffients[J]. Color Research and Application, 1987, 12(6): 340-343
hierarchical microspheres with enhanced activity and stability for [33] Xu J, Meng W, Zhang Y, et al. Photocatalytic degradation of
RhB degradation under visible light irradiation[J]. Catalysis tetrabromobisphenol A by mesoporous BiOBr: efficacy, products and
Communications, 2013, 42(5): 30-34. pathway[J]. Applied Catalysis B: Environmental,2011, 107(3/4):
[20] Ye L Q, Liu J Y, Jiang Z, et al. Facets coupling of BiOBr-g-C 3N 4 355-362.
composite photocatalyst for enhanced visible-light-driven photocatalytic [34] Shang M, Wang W Z, Zhang L.Preparation of BiOBr lamellar
activity[J]. Applied Catalysis B: Environmental, 2013, 142: 1-7. structure with high photocatalytic activity by CTAB as Br source and
[21] Shenawi-Khalil S, Uvarov V, Fronton S, et al. A novel heterojunction template[J]. Journal of Hazardous Materials, 2009, 167(1/2/3):
BiOBr/Bismuth oxyhydrate photocatalyst with highly enhanced 803-809.
visible light photocatalytic properties[J]. The Journal of Physical [35] Xiao X, Liu C, Hu R P, et al. Oxygen-rich bismuth oxyhalides:
Chemistry C, 2012,116 (20): 11004-11012. generalized one-pot synthesis, band structures and visible-light
[22] Di J, Xia J X, Ji M X, et al. Advanced photocatalytic performance of photocatalytic properties[J]. Journal of Materials Chemistry, 2012, 22
graphene-like BN modified BiOBr flower-like materials for the (43): 22840-22843.
removal of pollutants and mechanism insight[J]. Applied Catalysis B: [36] Nagaveni K, Hegde M S, Madras G. Structure and photocatalytic
Environmental, 2016, 183: 254-262. activity of Ti 1-xM xO 2+/-delta (M = W, V, Ce, Zr, Fe, and Cu)
[23] Shang J, Hao W C, Wang T M, et al. Bismuth oxybromide with synthesized by solution combustion method[J]. Journal of Physical
reasonable photocatalytic reduction activity under visible light[J]. Chemistry B, 2004, 108(52): 20204-20212.
ACS Catalysis, 2014, 4(3): 954-961. [37] Fan H M, Jiang T F, Li H Y, et al. Effect of BiVO 4 crystalline phases
[24] Xiao X, Liu C, Hu R P, et al. Oxygen-rich bismuth oxyhalides: on the photoinduced carriers behavior and photocatalytic activity[J].
generalized one-pot synthesis, band structures and visible-light Journal of Physical Chemistry C, 2012, 116(3): 2425-2430.
photocatalytic properties[J]. Journal of Materials Chemistry, 2012, [38] Sze S M, Kwok K N. Physics of semiconductor devices[M]. 3ed.
22(43): 22840-22843 New York: John Wiley & Sons, 2007.
[25] Su Y R, Ding C H, Dang Y L, et al. First hydrothermal synthesis of [39] Nethercot H. Prediction of Fermi energies and photoelectric
Bi 5O 7Br and its photocatalytic properties for molecular oxygen thresholds based on electronegativity concepts[J].Physical Review
activation and RhB degradation[J]. Applied Surface Science, 2015, Letters, 1974, 33(18): 1088-1091.