Page 59 - 201809
P. 59

第 9 期                    曾小星,等: Bi 24 O 31 Br 10 /BiOBr 的控制合成及其光催化性能                    ·1485·


                 assembly strategy[J]. Nanoscale, 2014, 6(1): 145-150.   346(15): 311-316
            [12]  Zhao Y, Yu T, Tan X, et al. SDS-assisted solvothermal synthesis of   [26]  Wang J L, Yu Y, Zhang L Z.  et al. Highly efficient photocatalytic
                 rose-like BiOBr partially enclosed by {111} facets and enhanced   removal of sodium pentachlorophenate with Bi 3O 4Br under visible
                 visible-light photocatalytic activity[J]. Dalton Transactions, 2015, 44   light[J]. Applied Catalysis B: Environmental, 2013, 112 (5): 136-137.
                 (47): 20475-20483.                            [27]  Xiao X, Hu R P, Liu C, et al. Facile microwave synthesis of novel
            [13]  Huo Y N,  Zhang J, Miao M,  et al. Solvothermal synthesis of   hierarchical Bi 24O 31Br 10  nanoflakes  with excellent visible light
                 flower-like  BiOBr  microspheres  with  highly  visible-light  photocatalytic performance for the  degradation of tetracycline
                 photocatalytic performances[J]. Applied Catalysis B: Environmental,   hydrochloride[J].  Chemical  Engineering Journal, 2013, 225(1):
                 2012, 111(12): 334-341.                           790-797.
            [14]  Feng Y C, Li L, Li J W, et al. Synthesis of mesoporous BiOBr 3D   [28]  Li F T, Wang Q, Ran J R, et al. Ionic liquid self-combustion synthesis
                 microspheres and their photodecomposition for toluene[J]. Journal of   of BiOBr/Bi 24O 31Br 10 heterojunctions  with exceptional visible-light
                 Hazardous Materials, 2011, 192(2): 538-544.       photocatalytic performances[J]. Nanoscale, 2015,7(3): 1116-1126.
            [15]  Zhang J, Shi F J, Lin J,  et al. Self-assembled 3D architectures  of   [29]  Peng Y, Yu P P, Chen Q G, et al. Facile fabrication of Bi 12O 17Br 2/
                 BiOBr as  a visible light-driven  photocatalyst[J]. Chemistry of   Bi 24O 31Br 10 Type II heterostructures with high visible photocatalytic
                 Materials, 2008, 20(13): 2937-2941.               activity[J]. Journal of Physical Chemistry C, 2015,119(23):
            [16]  Fan Z,  Zhao Y B,  Zhai  W,  et al. Facet-dependent performance of   13032-13040.
                 BiOBr for photocatalytic reduction of Cr (Ⅵ)[J]. RSC Advances,   [30]  Zeng X X , Wan Y Q , Gong X F, et al. Additive dependent synthesis
                 2016, 6(3): 2028-2031.                            of bismuth oxybromide composites for photocatalytic removal of the
            [17]  Zhang D, Li J, Wang Q G, et al. High (001) facets dominated BiOBr   antibacterial agent ciprofloxacin and mechanism insight[J]. RSC
                 lamellas: facile hydrolysis  preparation and selective visible-light   Advances, 2017, 7(58): 36269-36278.
                 photocatalytic activity [J]. Journal  of Materials Chemistry A,   [31]  Di J, Xia J X, Ji  M X,  et al. Controllable synthesis of Bi 4O 5Br 2
                 2013,1(30): 8622-8629.                            ultrathin nanosheets for photocatalytic removal of ciprofloxacin and
            [18]  Li Y L, Liu Y M, Wang J S,  et al.  Titanium alkoxide induced   mechanism insight[J]. Journal of Materials Chemistry A, 2015, 3(29):
                 BiOBr-Bi 2WO 6  mesoporous nanosheet composites with much   15108-15118.
                 enhanced photocatalytic activity[J]. Journal  of Materials  Chemistry   [32]  Walowit Eric, Mccarthy Cornelius J, Berns Roy S. An algorithm for
                 A, 2013, 1(27): 7949-7956.                        the optimiaztion of Kubelka-Munk absorption and scattering
            [19]  Yan T J,  Yan X  Y,  Guo R R,  et al. Ag/AgBr/BiOBr hollow   coeffients[J]. Color Research and Application, 1987, 12(6): 340-343
                 hierarchical microspheres with enhanced activity and stability for   [33]  Xu J, Meng W,  Zhang Y,  et al.  Photocatalytic degradation of
                 RhB degradation under visible light irradiation[J]. Catalysis   tetrabromobisphenol A by mesoporous BiOBr: efficacy, products and
                 Communications, 2013, 42(5): 30-34.               pathway[J]. Applied Catalysis B: Environmental,2011,  107(3/4):
            [20]  Ye  L Q, Liu J Y, Jiang Z, et al. Facets coupling of BiOBr-g-C 3N 4   355-362.
                 composite photocatalyst for enhanced visible-light-driven photocatalytic   [34]  Shang M,  Wang W Z, Zhang L.Preparation of BiOBr lamellar
                 activity[J]. Applied Catalysis B: Environmental, 2013, 142: 1-7.   structure with high photocatalytic activity by CTAB as Br source and
            [21]  Shenawi-Khalil S, Uvarov V, Fronton S, et al. A novel heterojunction   template[J]. Journal  of Hazardous  Materials, 2009,  167(1/2/3):
                 BiOBr/Bismuth oxyhydrate photocatalyst with  highly  enhanced   803-809.
                 visible light photocatalytic properties[J].  The Journal of Physical   [35]  Xiao X, Liu C,  Hu R P,  et al.  Oxygen-rich bismuth oxyhalides:
                 Chemistry C, 2012,116 (20): 11004-11012.          generalized one-pot synthesis, band structures and visible-light
            [22]  Di J, Xia J X, Ji M X, et al. Advanced photocatalytic performance of   photocatalytic properties[J]. Journal of Materials Chemistry, 2012, 22
                 graphene-like BN modified BiOBr flower-like materials for the   (43): 22840-22843.
                 removal of pollutants and mechanism insight[J]. Applied Catalysis B:   [36]  Nagaveni K, Hegde M S, Madras G. Structure and photocatalytic
                 Environmental, 2016, 183: 254-262.                activity of Ti 1-xM xO 2+/-delta  (M =  W,  V, Ce,  Zr, Fe, and Cu)
            [23]  Shang J, Hao W C, Wang T M, et  al.  Bismuth oxybromide with   synthesized by solution combustion method[J]. Journal of Physical
                 reasonable photocatalytic reduction activity under  visible light[J].   Chemistry B, 2004, 108(52): 20204-20212.
                 ACS Catalysis, 2014, 4(3): 954-961.           [37]  Fan H M, Jiang T F, Li H Y, et al. Effect of BiVO 4 crystalline phases
            [24]  Xiao X, Liu C,  Hu R P,  et al. Oxygen-rich bismuth oxyhalides:   on the photoinduced carriers behavior and photocatalytic activity[J].
                 generalized one-pot synthesis, band structures and visible-light   Journal of Physical Chemistry C, 2012, 116(3): 2425-2430.
                 photocatalytic properties[J]. Journal of Materials Chemistry, 2012,   [38]  Sze S M, Kwok K N. Physics of semiconductor devices[M]. 3ed.
                 22(43): 22840-22843                               New York: John Wiley & Sons, 2007.
            [25]  Su Y R, Ding C H, Dang Y L, et al. First hydrothermal synthesis of   [39]  Nethercot H. Prediction of Fermi energies and photoelectric
                 Bi 5O 7Br and its photocatalytic properties for molecular oxygen   thresholds  based on electronegativity concepts[J].Physical Review
                 activation and RhB degradation[J]. Applied Surface Science, 2015,   Letters, 1974, 33(18): 1088-1091.
   54   55   56   57   58   59   60   61   62   63   64