Page 49 - 精细化工2019年第10期
P. 49
第 10 期 徐兵兵,等: 改性 SiO 2 /聚硅氧烷无氟超疏水涂层的制备及性能 ·2015·
层的超疏水性增大提供了依据。 on microstructured hydrophobic surfaces for the passive containment
cos cos (1) cooling system[J]. Science & Technology of Nuclear Installations,
2015: 1-6.
式中: 为表观接触角,°; 为本征接触角,°;γ [8] Aljallis E, Sarshar M A, Datla R, et al. Experimental study of skin
friction drag reduction on superhydrophobic flat plates in high
为表面粗糙因子。 Reynolds number boundary layer flow[J]. Physics of Fluids, 2013,
25(2): 351-412.
3 结论 [9] Wang S, Liu K, Xi Y, et al. Bioinspired surfaces with superwettability:
New insight on theory, designand applications[J]. Chemical Reviews,
2015, 115, 8230-8293.
(1)通过 FTIR 和 TGA 对改性前后 SiO 2 颗粒进 [10] Di Mundo R, Palumbo F, D'Agostino R. Nanotexturing of polystyrene
行分析,表面含有大量硅羟基的 SiO 2 颗粒能与 surface in fluorocarbon plasmas:From sticky to slippery
superhydrophobicity[J]. Langmuir, 2008, 24(9): 5044-5051.
HDTMS 反应,在 SiO 2 颗粒的表面引入疏水性烷基 [11] Di M R, Palumbo F, D'Agostino R. Influence of chemistry on wetting
长链,制备出疏水性改性的微纳米 SiO 2 颗粒。 dynamics of nanotextured hydrophobic surfaces[J]. Langmuir, 2009
( 2)将 疏 水微纳 米 SiO 2 颗粒 与 MTES 和 26(7): 5196-5201.
[12] Duparre A, Flemming M, Steinert J, et al. Optical coatings with
DEDMS 在酸性条件下水解制备得到的疏水涂料可 enhanced roughness for ultra-hydrophobic, low scatter applications[J].
以涂覆在多种基材表面,其中含有 2.00 g 疏水微纳 Applied Optics, 2002, 41(16): 3294-3298.
[13] Amigoni S, Givenchy E T D, Dufay M, et al. Covalent layer-by-layer
米 SiO 2 颗粒,1.34 g MTES、0.74 g DEDMS 配方的 assembled superhydrophobic organic−inorganic hybrid films[J].
涂料经 120 ℃干燥固化可得到无氟超疏水复合涂 Langmuir, 2009, 25(18): 11073-11077.
[14] Accardo A, Gentile F, Mecarini F, et al. In situ X-ray scattering
层,涂层表面水滴的静态接触角为 151°,具有自清 studies of protein solution droplets drying on micro- and nanopatterned
洁性能。 superhydrophobic PMMA surfaces[J]. Langmuir the Acs Journal of
Surfaces & Colloids, 2010, 26(18): 15057-15064.
(3)有机硅烷将微纳米尺寸疏水 SiO 2 颗粒固定在
[15] Darmanin T, Guittard F. Superoleophobic surfaces with short
基体表面可以制备具有耐磨损性能的无氟超疏水涂 fluorinated chains[J]. Soft Matter, 2013, 9(25): 5982.
层。并且,通过接触角、SEM 和 AFM 测试表明,摩 [16] Su Q, Wen F, Huang Y, et al. Abrasion resistant semitransparent
self-cleaning coatings based on porous silica microspheres and
擦可以进一步提高涂层表面粗糙度,进而增强涂层表 polydimethylsiloxane[J]. Ceramics International, 2018,45: 401-408.
面的超疏水性能,磨损后接触角从 151°提高至 161°。 [17] Yang M, Liu W, Jiang C, et al. Robust fabrication of superhydrophobic
and photocatalytic self-cleaning cotton textile based on TiO 2 and
本文利用 HDTMS 改性 SiO 2 颗粒,用改性后 SiO 2 fluoroalkylsilane[J]. Journal of Materials Science, 2019, 54(3):
颗粒和有机硅烷在基体表面制备一种无氟超疏水涂 2079-2092.
[18] Zhang X, Wang H, Liu Z, et al. Fabrication of durable fluorine-free
层,与含氟超疏水涂层相比,该涂层制备工艺简单、 superhydrophobic polyethersulfone (PES) composite coating enhanced
成本低、污染少,拓宽了基体使用范围,在金属、 by assembled MMT-SiO 2 nanoparticles[J]. Applied Surface Science,
2017, 396: 1580-1588.
建筑、纺织等防污领域方面具有很好的应用前景,
[19] Jiang C, Zhang Y, Wang Q, et al. Superhydrophobic polyurethane
对无氟耐磨损超疏水涂层材料的开发具有一定的参 and silica nanoparticles coating with high transparency and
考意义。 fluorescence[J]. Journal of Applied Polymer Science, 2013, 129(5):
2959-2965.
[20] Wang N, Xiong D. Superhydrophobic membranes on metal substrate
参考文献:
and their corrosion protection in different corrosive media[J].
[1] Zhao Ning (赵宁), Lu Xiaoying (卢晓英), Zhang Xiaoyan (张晓艳). Applied Surface Science, 2014, 305: 603-608.
Progress in superhydrophobic surfaces[J]. Progress in Chemistry (化 [21] Foorginezhad S, Zerafat M M. Fabrication of stable fluorine-free
学进展), 2007, 19(6): 860-871. superhydrophobic fabrics for anti-adhesion and self-cleaning
[2] Xu Lijie (许里杰), Lu Zhenzhen (鲁浈浈), Zhou Jianting (周建庭). properties[J]. Applied Surface Science, 2019, 464: 458-471.
Preparation and properties of transparent superhydrophobic SiO 2/ [22] Cao Hongxia (曹红霞), Feng Xiaojing (冯晓静), Huo Jichuan (霍冀
silicone sealant composite coatings[J]. Fine Chemicals (精细化工), 川). Synthesis and surface chemical modification of the monodisperse
2018, 36(7): 1334-1339. silica microsphere[J]. Journal of Synthetic Crystals (人工晶体学报),
[3] Hsu C P, Chang L Y, Chiu C W, et al. Facile fabrication of robust 2016, 45(8): 2050-2055.
superhydrophobic epoxy film with polyamine dispersed carbon [23] Qu M, Liu S, He J, et al. Bioinspired durable superhydrophobic
Nanotubes[J]. ACS Applied Materials & Interfaces, 2013, 5(3): materials with antiwear property fabricated from quartz sands and
538-545. organosilane[J]. Journal of Materials Science,2016, 51(18): 8718-
[4] Zhou H,Wang H, Niu H, et al. Fluoroalkyl silane modified silicone 8727.
rubber/nanoparticle composite: A super durable, robust superhydrophobic [24] Fei Ting ( 费婷 ), Chen Hongling ( 陈洪龄 ). Preparation and
fabric coating[J]. Advanced Materials, 2012, 24(18): 2409-2412. characterization of highly transparent superhydrophobic coatings by
[5] Miyauchi Y, Ding B, Shiratori S. Fabrication of a silver-ragwort- chemical vapor deposition on template[J]. Journal of Nanjing
leaf-like super-hydrophobic micro/nanoporous fibrous mat surface by University of Technology (南京工业大学学报: 自然科学版), 2014,
electrospinning[J]. Nanotechnology, 2006, 17(20): 5151-5156. 36(1): 13-18.
[6] Sun T, Feng L, Gao X, et al. Bioinspired surfaces with special [25] Di Mundo R, Bottiglione F, Carbone G. Cassie state robustness of
wettability[J]. Acc Chem Res, 2005, 38(8): 644-652. plasma generated randomly nano-rough surfaces[J]. Applied Surface
[7] Zhao W, Zhang X, Tian C, et al. Analysis of wetting characteristics Science, 2014, 316: 324-332.