Page 49 - 精细化工2019年第10期
P. 49

第 10 期                  徐兵兵,等:  改性 SiO 2 /聚硅氧烷无氟超疏水涂层的制备及性能                             ·2015·


            层的超疏水性增大提供了依据。                                         on microstructured hydrophobic surfaces for the passive containment
                            cos      cos        (1)          cooling  system[J].  Science  &  Technology  of  Nuclear  Installations,
                                                                   2015: 1-6.
            式中: 为表观接触角,°; 为本征接触角,°;γ                         [8]   Aljallis E, Sarshar M A, Datla R, et al. Experimental study of skin
                    
                                                                   friction  drag  reduction  on  superhydrophobic  flat  plates  in  high
            为表面粗糙因子。                                               Reynolds  number  boundary  layer  flow[J].  Physics  of  Fluids,  2013,
                                                                   25(2): 351-412.
            3    结论                                            [9]   Wang S, Liu K, Xi Y, et al. Bioinspired surfaces with superwettability:
                                                                   New insight on theory, designand applications[J]. Chemical Reviews,
                                                                   2015, 115, 8230-8293.
                (1)通过 FTIR 和 TGA 对改性前后 SiO 2 颗粒进               [10]  Di Mundo R, Palumbo F, D'Agostino R. Nanotexturing of polystyrene
            行分析,表面含有大量硅羟基的 SiO 2 颗粒能与                              surface  in  fluorocarbon  plasmas:From  sticky  to  slippery
                                                                   superhydrophobicity[J]. Langmuir, 2008, 24(9): 5044-5051.
            HDTMS 反应,在 SiO 2 颗粒的表面引入疏水性烷基                      [11]  Di M R, Palumbo F, D'Agostino R. Influence of chemistry on wetting
            长链,制备出疏水性改性的微纳米 SiO 2 颗粒。                              dynamics of nanotextured hydrophobic surfaces[J]. Langmuir, 2009
                ( 2)将 疏 水微纳 米 SiO 2 颗粒 与 MTES 和                    26(7): 5196-5201.
                                                               [12]  Duparre  A,  Flemming  M,  Steinert  J,  et al.  Optical  coatings  with
            DEDMS 在酸性条件下水解制备得到的疏水涂料可                               enhanced roughness for ultra-hydrophobic, low scatter applications[J].
            以涂覆在多种基材表面,其中含有 2.00  g 疏水微纳                           Applied Optics, 2002, 41(16): 3294-3298.
                                                               [13]  Amigoni S, Givenchy E T D, Dufay M, et al. Covalent layer-by-layer
            米 SiO 2 颗粒,1.34 g MTES、0.74 g DEDMS 配方的                assembled  superhydrophobic  organic−inorganic  hybrid  films[J].
            涂料经 120  ℃干燥固化可得到无氟超疏水复合涂                              Langmuir, 2009, 25(18): 11073-11077.
                                                               [14]  Accardo  A,  Gentile  F,  Mecarini  F,  et al.  In situ  X-ray  scattering
            层,涂层表面水滴的静态接触角为 151°,具有自清                              studies of protein solution droplets drying on micro- and nanopatterned
            洁性能。                                                   superhydrophobic PMMA surfaces[J]. Langmuir the Acs Journal of
                                                                   Surfaces & Colloids, 2010, 26(18): 15057-15064.
                (3)有机硅烷将微纳米尺寸疏水 SiO 2 颗粒固定在
                                                               [15]  Darmanin  T,  Guittard  F.  Superoleophobic  surfaces  with  short
            基体表面可以制备具有耐磨损性能的无氟超疏水涂                                 fluorinated chains[J]. Soft Matter, 2013, 9(25): 5982.
            层。并且,通过接触角、SEM 和 AFM 测试表明,摩                        [16]  Su  Q,  Wen  F,  Huang  Y,  et al.  Abrasion  resistant  semitransparent
                                                                   self-cleaning  coatings  based  on  porous  silica  microspheres  and
            擦可以进一步提高涂层表面粗糙度,进而增强涂层表                                polydimethylsiloxane[J]. Ceramics International, 2018,45: 401-408.
            面的超疏水性能,磨损后接触角从 151°提高至 161°。                      [17]  Yang M, Liu W, Jiang C, et al. Robust fabrication of superhydrophobic
                                                                   and  photocatalytic  self-cleaning  cotton  textile  based  on  TiO 2 and
                本文利用 HDTMS 改性 SiO 2 颗粒,用改性后 SiO 2                  fluoroalkylsilane[J].  Journal  of  Materials  Science,  2019,  54(3):
            颗粒和有机硅烷在基体表面制备一种无氟超疏水涂                                 2079-2092.
                                                               [18]  Zhang X, Wang H, Liu Z, et al. Fabrication of durable fluorine-free
            层,与含氟超疏水涂层相比,该涂层制备工艺简单、                                superhydrophobic polyethersulfone (PES) composite coating enhanced
            成本低、污染少,拓宽了基体使用范围,在金属、                                 by assembled MMT-SiO 2 nanoparticles[J]. Applied Surface Science,
                                                                   2017, 396: 1580-1588.
            建筑、纺织等防污领域方面具有很好的应用前景,
                                                               [19]  Jiang  C,  Zhang  Y,  Wang  Q,  et al.  Superhydrophobic  polyurethane
            对无氟耐磨损超疏水涂层材料的开发具有一定的参                                 and  silica  nanoparticles  coating  with  high  transparency  and
            考意义。                                                   fluorescence[J].  Journal  of  Applied  Polymer  Science,  2013,  129(5):
                                                                   2959-2965.
                                                               [20]  Wang N, Xiong D. Superhydrophobic membranes on metal substrate
            参考文献:
                                                                   and  their  corrosion  protection  in  different  corrosive  media[J].
            [1]   Zhao Ning (赵宁), Lu Xiaoying (卢晓英), Zhang Xiaoyan (张晓艳).   Applied Surface Science, 2014, 305: 603-608.
                 Progress in superhydrophobic surfaces[J]. Progress in Chemistry (化  [21]  Foorginezhad  S,  Zerafat  M  M.  Fabrication  of  stable  fluorine-free
                 学进展), 2007, 19(6): 860-871.                       superhydrophobic  fabrics  for  anti-adhesion  and  self-cleaning
            [2]   Xu Lijie (许里杰), Lu Zhenzhen (鲁浈浈), Zhou Jianting (周建庭).   properties[J]. Applied Surface Science, 2019, 464: 458-471.
                 Preparation  and  properties  of  transparent  superhydrophobic  SiO 2/   [22]  Cao Hongxia (曹红霞), Feng Xiaojing (冯晓静), Huo Jichuan (霍冀
                 silicone sealant composite coatings[J]. Fine Chemicals (精细化工),   川). Synthesis and surface chemical modification of the monodisperse
                 2018, 36(7): 1334-1339.                           silica microsphere[J]. Journal of Synthetic Crystals (人工晶体学报),
            [3]   Hsu C P, Chang L Y, Chiu C W, et al. Facile fabrication of robust   2016, 45(8): 2050-2055.
                 superhydrophobic  epoxy  film  with  polyamine  dispersed  carbon   [23]  Qu  M,  Liu  S,  He  J,  et al.  Bioinspired  durable  superhydrophobic
                 Nanotubes[J].  ACS  Applied  Materials  &  Interfaces,  2013,  5(3):   materials  with  antiwear  property  fabricated  from  quartz  sands  and
                 538-545.                                          organosilane[J].  Journal  of  Materials  Science,2016,  51(18):  8718-
            [4]   Zhou H,Wang H, Niu H, et al. Fluoroalkyl silane modified silicone   8727.
                 rubber/nanoparticle composite: A super durable, robust superhydrophobic   [24]  Fei  Ting  ( 费婷 ),  Chen  Hongling  ( 陈洪龄 ).  Preparation  and
                 fabric coating[J]. Advanced Materials, 2012, 24(18): 2409-2412.   characterization of highly transparent superhydrophobic coatings by
            [5]   Miyauchi  Y,  Ding  B,  Shiratori  S.  Fabrication  of  a  silver-ragwort-   chemical  vapor  deposition  on  template[J].  Journal  of  Nanjing
                 leaf-like super-hydrophobic micro/nanoporous fibrous mat surface by   University of Technology (南京工业大学学报:  自然科学版), 2014,
                 electrospinning[J]. Nanotechnology, 2006, 17(20): 5151-5156.   36(1): 13-18.
            [6]   Sun  T, Feng  L, Gao X,  et al.  Bioinspired  surfaces  with  special   [25]  Di  Mundo  R,  Bottiglione  F,  Carbone  G.  Cassie  state  robustness  of
                 wettability[J]. Acc Chem Res, 2005, 38(8): 644-652.   plasma generated randomly nano-rough surfaces[J]. Applied Surface
            [7]   Zhao W, Zhang X, Tian C, et al. Analysis of wetting characteristics   Science, 2014, 316: 324-332.
   44   45   46   47   48   49   50   51   52   53   54