Page 85 - 精细化工2019年第10期
P. 85

第 10 期                       王少华,等:  软模板法制备单分散中空有机硅微球                                   ·2051·


            式;(3)乳化剂用量能够影响包覆得到的中空结构                                for  intracellular  gene  regulation  based  upon  biocompatible  silica
            形貌,乳化剂用量过高时得到是半球类型碗状结构,                                shells[J]. Nano Letters, 2012, 12(7): 3867-3871.
                                                               [12]  Titirici  M  M, Antonietti  M,  Thomas  A.  A  generalized  synthesis  of
            降低乳化剂用量,能够得到形貌规整的单分散中空                                 metal  oxide  hollow  spheres  using  a  hydrothermal  approach[J].
            微球;(4)经 EDS、FTIR 表征可知,该中空微球的                           Chemistry of Materials, 2006, 18(16): 3808-3812.
                                                               [13]  Kim S W, Kim M, Lee W Y, et al. Fabrication of hollow palladium
            成分为有机硅。该研究利用乳液为模板,制备出了
                                                                   spheres  and  their  successful  application  to  the  recyclable
            形貌规整的单分散中空有机硅微球,为其在光子晶                                 heterogeneous  catalyst  for  Suzuki  coupling  reactions[J].  Journal  of
            体方面的应用奠定了基础。                                           the American Chemical Society, 2002, 124(26): 7642-7643.
                                                               [14]  Sasidharan M, Nakashima K. Core-shell-corona polymeric micelles
            参考文献:                                                  as a versatile template for synthesis of inorganic hollow nanospheres[J].
                                                                   Accounts of Chemical Research, 2014, 47(1): 157-167.
            [1]   Wang X, Feng J, Bai Y, et al. Synthesis, properties, and applications   [15]  Wang  Z,  Chen  M,  Wu  L.  Synthesis of  monodisperse  hollow  silver
                 of  hollow  micro-/nanostructures[J].  Chem  Rev,  2016,  116(18):   spheres  using  phase-transformable  emulsions  as  templates[J].
                 10983-11060.                                      Chemistry of Materials, 2008, 20(10): 3251-3253.
            [2]   Joo J B, Zhang Q, Dahl M, et al. Synthesis, crystallinity control, and   [16]  Han Y S, Hadiko G, Fuji M, et al. A novel approach to synthesize
                 photocatalysis  of  nanostructured  titanium  dioxide  shells[J].  Journal   hollow  calcium  carbonate  particles[J].  Chemistry  Letters,  2005,
                 of Materials Research, 2013, 28(3): 362-368.      34(2): 152-153.
            [3]   Rahman Z U, Wei N, Li Z, et al. Preparation of hollow mesoporous   [17]  Obey  T  M,  Vincent  B.  Novel  monodisperse  silicone  oil-water
                 silica  nanospheres:  Controllable  template  synthesis  and  their
                 application  in  drug  delivery[J].  New  Journal  of  Chemistry,  2017,   emulsions[J]. Journal of Colloid and Interface Science, 1994, 163(2):
                 41(23): 14122-14129.                              454-463.
            [4]   Moon G D, Joo J B, Dahl M, et al. Nitridation and layered assembly   [18]  Zoldesi C I, Steegstra P, Imhof A. Encapsulation of emulsion droplets
                 of  hollow  TiO 2  shells  for  electrochemical  energy  storage[J].   by organo-silica shells[J]. Journal of Colloid and Interface Science,
                 Advanced Functional Materials, 2014, 24(6): 848-856.     2007, 308(1): 121-129.
            [5]   Zhang  X,  Wang  F,  Wang  L,  et al.  Designing  composite  films  of   [19]  Rosen M J, Kunjappu J T. Surfactant and interfacial phenomena[M].
                 SiO 2/TiO 2/PDMS  with  long  lasting  invariable  colors  and  enhanced   Cui  Zhenggang(崔正刚),  Jiang  Jianzhong(蒋建中),  译.4th  ed.
                 mechanical robustness[J]. Dyes and Pigments, 2017, 138: 182-189.     Beijing: Chemical Industry Press(化学工业出版社), 2015: 228-241.
            [6]   Gao J, Zhang X, Lu Y, et al. Selective functionalization of hollow   [20]  Boyd  J  V,  Parkinson  C,  Sherman  P.  Factors  affecting  emulsion
                 nanospheres  with  acid  and  base  groups  for  cascade  reactions[J].   stability,  and  the  HLB  concept[J].  Journal  of  Colloid  and  Interface
                 Chemistry-A European Journal, 2015, 21(20): 7403-7407.     Science, 1972, 41(2): 359-370.
            [7]   Zhang  Q,  Zhang  T,  Ge  J,  et al.  Permeable  silica  shell  through   [21]  Yu L, Li C, Xu J, et al. Highly stable concentrated nanoemulsions by
                 surface-protected etching[J]. Nano Letters, 2008, 8(9): 2867-2871.     the phase inversion composition method at elevated temperature[J].
            [8]   Zhang  L,  Wang  H.  Cuprous  oxide  nanoshells  with  geometrically   Langmuir, 2012, 28(41): 14547-14552.
                 tunable optical properties[J]. Acs Nano, 2011, 5(4): 3257-3267.    [22]  Griffin  W  C.  Classification  of  surface-active  agents  by  "HLB"[J].
            [9]   Wang  W  S,  Dahl  M,  Yin  Y  D.  Hollow  nanocrystals  through  the   Journal of Cosmetic Science, 1949, 1: 311-326.
                 nanoscale kirkendall effect[J]. Chemistry of Materials, 2013, 25(8):   [23]  Yang Jisheng (杨继生). Principle and application of surfactnts[M].
                 1179-1189.                                        Nanjing:  Southeasr  University  Press  (东南大学出版社),  2012:
            [10]  Caruso F, Caruso R A, Möhwald H. Nanoengineering of inorganic   35-47.
                 and hybrid hollow spheres by colloidal templating[J]. Science, 1998,   [24]  Zoldesi C I, Van Walree C A, Imhof A. Deformable hollow hybrid
                 282(5391): 1111-1114.                             silica/siloxane colloids by emulsion templating[J]. Langmuir, 2006,
            [11]  Young K L, Scott A W, Hao L L, et al. Hollow spherical nucleic acids     22(9): 4343-4352.



            (上接第 2027 页)                                           from  silica-based nanocoatings[J].  Surface  &  Coatings  Technology,
                                                                   2009, 203(22): 3377-3384.
            [16]  Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Ind   [22]  Zhang  J,  Wu  L,  Li  B,  et al.  Evaporation-induced  transition  from
                 Eng Chem, 1936, 28(8): 988-994.                   nepenthes  pitcher-inspired  slippery  surfaces  to  lotus  leaf-inspired
            [17]  Brown  P  S,  Bhushan  B.  Designing  bioinspired  superoleophobic   superoleophobic surfaces[J]. Langmuir, 2014, 30(47): 14292-14299.
                 surfaces[J]. APL Materials, 2016, 4(1): 015703-015710.     [23]  Guan J H, Wells G G, Xu B, et al. Evaporation of sessile droplets on
            [18]  Alexander S, Eastoe J, Barron A R, et al. Branched hydrocarbon low   slippery liquid-infusedporous surfaces (SLIPS)[J]. Langmuir the Acs
                 surface energy materials (LSEMs) for superhydrophobic nanoparticle
                 derived surfaces[J]. ACS Applied Materials & Interfaces, 2015, 8(1):   Journal of Surfaces & Colloids, 2105, 31(43): 11781-11789.
                 660-669.                                      [24]  Michalski M C, Desobry S, Mousavi M, et al. Prediction of mass of
            [19]  Furmidge C G L. Studies at phase interfaces. I. The sliding of liquid   residues on food-contact surfaces from edible oils and their emulsions
                 drops on solid surfaces and a theory for spray retention[J]. Journal of   [J]. Journal of Food Engineering, 1998, 37(3): 271-291.
                 Colloid Science, 1962, 17(4): 309-324.        [25]  Vorobev A. Dissolution dynamics of miscible liquid/liquid interfaces
            [20]  Cui  Z,  Yin  L,  Wang  Q,  et al.  A  facile  dip-coating  process  for   [J].  Current  Opinion  In  Colloid  &  Interface  Science,  2014,  19(4):
                 preparing highly durable superhydrophobic surface with multi-scale   300- 308.
                 structures on paint films[J]. Journal of Colloid and Interface Science,   [26]  Howell  C,  Vu  T  L,  Johnson  C  P,  et al.  Stability  of  surface
                 2009, 337(2): 531-537.                            immobilized  lubricant  interfaces  under  flow[J].  Chemistry  of
            [21]  Hsieh C  T,  Wu F L,  Chen  W Y.  Super  water- and  oil-repellencies   materials, 2016, 27(5): 1792-1800.
   80   81   82   83   84   85   86   87   88   89   90