Page 85 - 精细化工2019年第10期
P. 85
第 10 期 王少华,等: 软模板法制备单分散中空有机硅微球 ·2051·
式;(3)乳化剂用量能够影响包覆得到的中空结构 for intracellular gene regulation based upon biocompatible silica
形貌,乳化剂用量过高时得到是半球类型碗状结构, shells[J]. Nano Letters, 2012, 12(7): 3867-3871.
[12] Titirici M M, Antonietti M, Thomas A. A generalized synthesis of
降低乳化剂用量,能够得到形貌规整的单分散中空 metal oxide hollow spheres using a hydrothermal approach[J].
微球;(4)经 EDS、FTIR 表征可知,该中空微球的 Chemistry of Materials, 2006, 18(16): 3808-3812.
[13] Kim S W, Kim M, Lee W Y, et al. Fabrication of hollow palladium
成分为有机硅。该研究利用乳液为模板,制备出了
spheres and their successful application to the recyclable
形貌规整的单分散中空有机硅微球,为其在光子晶 heterogeneous catalyst for Suzuki coupling reactions[J]. Journal of
体方面的应用奠定了基础。 the American Chemical Society, 2002, 124(26): 7642-7643.
[14] Sasidharan M, Nakashima K. Core-shell-corona polymeric micelles
参考文献: as a versatile template for synthesis of inorganic hollow nanospheres[J].
Accounts of Chemical Research, 2014, 47(1): 157-167.
[1] Wang X, Feng J, Bai Y, et al. Synthesis, properties, and applications [15] Wang Z, Chen M, Wu L. Synthesis of monodisperse hollow silver
of hollow micro-/nanostructures[J]. Chem Rev, 2016, 116(18): spheres using phase-transformable emulsions as templates[J].
10983-11060. Chemistry of Materials, 2008, 20(10): 3251-3253.
[2] Joo J B, Zhang Q, Dahl M, et al. Synthesis, crystallinity control, and [16] Han Y S, Hadiko G, Fuji M, et al. A novel approach to synthesize
photocatalysis of nanostructured titanium dioxide shells[J]. Journal hollow calcium carbonate particles[J]. Chemistry Letters, 2005,
of Materials Research, 2013, 28(3): 362-368. 34(2): 152-153.
[3] Rahman Z U, Wei N, Li Z, et al. Preparation of hollow mesoporous [17] Obey T M, Vincent B. Novel monodisperse silicone oil-water
silica nanospheres: Controllable template synthesis and their
application in drug delivery[J]. New Journal of Chemistry, 2017, emulsions[J]. Journal of Colloid and Interface Science, 1994, 163(2):
41(23): 14122-14129. 454-463.
[4] Moon G D, Joo J B, Dahl M, et al. Nitridation and layered assembly [18] Zoldesi C I, Steegstra P, Imhof A. Encapsulation of emulsion droplets
of hollow TiO 2 shells for electrochemical energy storage[J]. by organo-silica shells[J]. Journal of Colloid and Interface Science,
Advanced Functional Materials, 2014, 24(6): 848-856. 2007, 308(1): 121-129.
[5] Zhang X, Wang F, Wang L, et al. Designing composite films of [19] Rosen M J, Kunjappu J T. Surfactant and interfacial phenomena[M].
SiO 2/TiO 2/PDMS with long lasting invariable colors and enhanced Cui Zhenggang(崔正刚), Jiang Jianzhong(蒋建中), 译.4th ed.
mechanical robustness[J]. Dyes and Pigments, 2017, 138: 182-189. Beijing: Chemical Industry Press(化学工业出版社), 2015: 228-241.
[6] Gao J, Zhang X, Lu Y, et al. Selective functionalization of hollow [20] Boyd J V, Parkinson C, Sherman P. Factors affecting emulsion
nanospheres with acid and base groups for cascade reactions[J]. stability, and the HLB concept[J]. Journal of Colloid and Interface
Chemistry-A European Journal, 2015, 21(20): 7403-7407. Science, 1972, 41(2): 359-370.
[7] Zhang Q, Zhang T, Ge J, et al. Permeable silica shell through [21] Yu L, Li C, Xu J, et al. Highly stable concentrated nanoemulsions by
surface-protected etching[J]. Nano Letters, 2008, 8(9): 2867-2871. the phase inversion composition method at elevated temperature[J].
[8] Zhang L, Wang H. Cuprous oxide nanoshells with geometrically Langmuir, 2012, 28(41): 14547-14552.
tunable optical properties[J]. Acs Nano, 2011, 5(4): 3257-3267. [22] Griffin W C. Classification of surface-active agents by "HLB"[J].
[9] Wang W S, Dahl M, Yin Y D. Hollow nanocrystals through the Journal of Cosmetic Science, 1949, 1: 311-326.
nanoscale kirkendall effect[J]. Chemistry of Materials, 2013, 25(8): [23] Yang Jisheng (杨继生). Principle and application of surfactnts[M].
1179-1189. Nanjing: Southeasr University Press (东南大学出版社), 2012:
[10] Caruso F, Caruso R A, Möhwald H. Nanoengineering of inorganic 35-47.
and hybrid hollow spheres by colloidal templating[J]. Science, 1998, [24] Zoldesi C I, Van Walree C A, Imhof A. Deformable hollow hybrid
282(5391): 1111-1114. silica/siloxane colloids by emulsion templating[J]. Langmuir, 2006,
[11] Young K L, Scott A W, Hao L L, et al. Hollow spherical nucleic acids 22(9): 4343-4352.
(上接第 2027 页) from silica-based nanocoatings[J]. Surface & Coatings Technology,
2009, 203(22): 3377-3384.
[16] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Ind [22] Zhang J, Wu L, Li B, et al. Evaporation-induced transition from
Eng Chem, 1936, 28(8): 988-994. nepenthes pitcher-inspired slippery surfaces to lotus leaf-inspired
[17] Brown P S, Bhushan B. Designing bioinspired superoleophobic superoleophobic surfaces[J]. Langmuir, 2014, 30(47): 14292-14299.
surfaces[J]. APL Materials, 2016, 4(1): 015703-015710. [23] Guan J H, Wells G G, Xu B, et al. Evaporation of sessile droplets on
[18] Alexander S, Eastoe J, Barron A R, et al. Branched hydrocarbon low slippery liquid-infusedporous surfaces (SLIPS)[J]. Langmuir the Acs
surface energy materials (LSEMs) for superhydrophobic nanoparticle
derived surfaces[J]. ACS Applied Materials & Interfaces, 2015, 8(1): Journal of Surfaces & Colloids, 2105, 31(43): 11781-11789.
660-669. [24] Michalski M C, Desobry S, Mousavi M, et al. Prediction of mass of
[19] Furmidge C G L. Studies at phase interfaces. I. The sliding of liquid residues on food-contact surfaces from edible oils and their emulsions
drops on solid surfaces and a theory for spray retention[J]. Journal of [J]. Journal of Food Engineering, 1998, 37(3): 271-291.
Colloid Science, 1962, 17(4): 309-324. [25] Vorobev A. Dissolution dynamics of miscible liquid/liquid interfaces
[20] Cui Z, Yin L, Wang Q, et al. A facile dip-coating process for [J]. Current Opinion In Colloid & Interface Science, 2014, 19(4):
preparing highly durable superhydrophobic surface with multi-scale 300- 308.
structures on paint films[J]. Journal of Colloid and Interface Science, [26] Howell C, Vu T L, Johnson C P, et al. Stability of surface
2009, 337(2): 531-537. immobilized lubricant interfaces under flow[J]. Chemistry of
[21] Hsieh C T, Wu F L, Chen W Y. Super water- and oil-repellencies materials, 2016, 27(5): 1792-1800.