Page 38 - 201905
P. 38
·806· 精细化工 FINE CHEMICALS 第 36 卷
switching properties[J]. Advanced Functional Materials, 2007, 17(15): [28] Lu Y, Xia H, Zhang G, et al. Electrically tunable block copolymer
2779-2786. photonic crystals with a full color display[J]. Journal of Materials
[7] Li B, Zhou J, Li L,et al. One-dimensional photonic band gap structure Chemistry, 2009, 19(33): 5952-5955.
in abalone shell[J]. Chinese Science Bulletin, 2005, 50(14): 1529-1531. [29] Lu Y, Meng C, Xia H, et al. Fast electrically driven photonic crystal
[8] Sun J, Bharat B, Tong J. Structural coloration in nature[J]. RSC based on charged block copolymer[J]. Journal of Materials Chemistry C,
Advances, 2013, 3: 14862-14889. 2013, 1(38): 6107-6111.
[9] Yoshioka S, Matsuhana B, Tanaka S, et al. Mechanism of variable [30] Park T H, Yu S, Cho S H, et al. Block copolymer structural color
structural colour in the neon tetra: quantitative evaluation of the strain sensor[J]. NPG Asia Materials, 2018, 10(4): 328-339.
Venetian blind model[J]. Journal of the Royal Society Interface, [31] Kang H S, Lee J, Cho S M, et al. Printable and rewritable full block
2010, 8(54): 56-66. copolymer structural color[J]. Advanced Materials, 2017, 29(29).
[10] Yue Y, Gong J P. Tunable one-dimensional photonic crystals from DOI: 10.1002/adma.201700084
soft materials[J]. Journal of Photochemistry and Photobiology C: [32] Lee W, Yoon J, Thomas E L, et al. Dynamic changes in structural
Photochemistry Reviews, 2015, 23: 45-67. color of a lamellar block copolymer photonic gel during solvent
[11] Wang Y, Xu X, Xu P, et al. Controllable self-assembly of polystyrene- evaporation[J]. Macromolecules, 2013, 46(16): 6528-6532.
block-poly(2-vinylpyridine)[J]. Polymer International, 2018, 67(6): [33] Wu C, Tsai P, Wang T, et al. Flexible or robust amorphous photonic
619-626. crystals from network-forming block copolymers for sensing solvent
[12] Czarnecki S, Bertin A. Hybrid silicon-based organic/inorganic block vapors[J]. Analytical Chemistry, 2018, 90(7): 4847-4855.
copolymers with sol-gel active moieties: Synthetic advances, self- [34] Huang Y, Zheng Y, Pribyl J, et al. A versatile approach to different
assembly and applications in biomedicine and materials science[J]. colored photonicfilms generated from block copolymers and
Chemistry-A European Journal, 2018, 24(14): 3354-3373. theirconversion into polymer-grafted nanoplatelets[J]. Journal of
[13] Richardson J J, Bjornmalm M, Caruso F. Technology-driven layer- Materials Chemistry C, 2017, 5(38): 9873-9878.
by-layer assembly of nanofilms[J]. Science, 2015, 348(6233): 6223. [35] Song D, Jacucci G, Dundar F, et al. Photonic resins: Designing optical
[14] Wang L, Zhang S, Lutkenhaus J L, et al. All nanoparticle-based appearance via block copolymer self-assembly[J]. Macromolecules,
P(MMA–AA)/TiO 2 one-dimensional photonic crystal films with 2018, 51(6): 2395-2400.
tunable structural colors[J]. Journal of Materials Chemistry C, 2017, [36] Kosonen H, Valkama S, Ruokolainen J, et al. One-dimensional
5(32): 8266-8272. optical reflectors based on self-organization of polymeric comb-
[15] Karaman M, Kooi S E, Gleason K K. Vapor deposition of hybrid shaped supramolecules[J]. European Physical Journal E, 2003, 10(1):
organic-inorganic dielectric Bragg mirrors having rapid and 69-75.
reversibly tunable optical reflectance[J]. Chemistry of Materials, [37] Valkama S, Kosonen H, Ruokolainen J, et al. Self-assembled
2008, 20(6): 2262-2267. polymeric solid films with temperature-induced large and reversible
[16] Urbas A, Klosterman J, Tondiglia V, et al. Optically switchable photonic-bandgap switching[J]. Nature Materials, 2004, 3(12): 872-
Bragg reflectors[J]. Advanced Materials, 2004, 16(16): 1453-1456. 876.
[17] Urbas A, Tondiglia V, Natarajan L, et al. Optically switchable liquid [38] Boyle B M, French T A, Pearson R M, et al. Structural color for
crystal photonic structures[J]. Journal of the American Chemical additive manufacturing: 3D-printed photonic crystals from block
Society, 2004, 126(42): 13580-13581. copolymers[J]. ACS Nano, 2017, 11(3): 3052-3058.
[18] Sandrock M, Wiggins M, Shirk J S, et al. A widely tunable refractive [39] Tsujii K, Hayakawa M, Onda T, et al. A novel hybrid material of
index in a nanolayered photonic material[J]. Applied Physics Letters, polymer gels and bilayer membranes[J]. Macromolecules, 1997,
2004, 84(18): 3621-3623. 30(24): 7397-7402.
[19] Mao G, Andrews J, Crescimanno M, et al. Co-extruded mechanically [40] Haque M A, Kurokawa T, Gong J. Anisotropic hydrogel based on
tunable multilayer elastomer laser[J]. Optical Materials Express, bilayers: Color, strength, toughness, and fatigue resistance[J]. Soft
2011, 1(1): 108-114. Matter, 2012, 8(31): 8008-8016.
[20] Yablonovitch E. Engineered omnidirectional external-reflectivity [41] Haque M A, Kamita G, Kurokawa T, et al. Unidirectional alignment
spectra from one-dimensional layered interference filters[J]. Optics of lamellar bilayer in hydrogel: one-dimensional swelling, anisotropic
Letters, 1998, 23(21): 1648-1649. modulus, and stress/strain tunable structural color[J]. Advanced
[21] Qian Hujun (钱虎军). Dissipative particle dynamics study of block Materials, 2010, 22(45): 5110-5114.
copolymer microphase separation and the surface diffusion dynamics [42] Haque M A, Kurokawa T, Kamita G, et al. Lamellar bilayers as
of polymer chain[D]. Changchun: JiLin University (吉林大学), 2007. reversible sacrificial bonds to toughen hydrogel: Hysteresis, self-
[22] Edrington A C, Urbas A M, Derege P, et al. Polymer-based photonic recovery, fatigue resistance, and crack blunting[J]. Macromolecules,
crystals[J]. Advanced Materials, 2001, 13(6): 421-425. 2011, 44(22): 8916-8924.
[23] Kang Y, Walish J J, Gorishnyy T, et al. Broad-wavelength-range [43] Yue Y, Kurokawa T, Haque M A, et al. Mechano-actuated ultrafast
chemically tunable block-copolymer photonic gels[J]. Nature Materials, full-colour switching in layered photonic hydrogels[J]. Nature
2007, 6(12): 957-960. Communications, 2014, 5: 4659.
[24] Chan E P, Walish J J, Thomas E L, et al. Block copolymer photonic [44] Wang Ru (王茹), Wang Yongxin (王永鑫), Chen Chongyi (陈重一).
gel for mechanochromic sensing[J]. Advanced Materials, 2011, Different systems of double-network gels and their reinforcing
23(40): 4702-4706. mechanisms[J]. Material Review (材料导报), 2015, 29(12): 41-46.
[25] Walish J J, Fan Y, Centrone A, et al. Controlling thermochromism in [45] Haque M A, Kurokawa T, Kamita G, et al. Rapid and reversible
a photonic block copolymer gel [J]. Macromolecular Rapid tuning of structural color of a hydrogel over the entire visible
Communications, 2012, 33(18): 1504-1509. spectrum by mechanical stimulation[J]. Chemistry of Materials,
[26] Walish J J, Kang Y, Mickiewicz R A, et al. Bioinspired 2011, 23(23): 5200-5207.
electrochemically tunable block copolymer full color pixels[J]. [46] Yue Y F, Haque M A, Kurokawa T, et al. Lamellar hydrogels with
Advanced Materials, 2009, 21(30): 3078-3081. high toughness and ternary tunable photonic stop-band[J]. Advanced
[27] Park T J, Hwang S K, Park S, et al. Electrically tunable soft-solid Materials, 2013, 25(22): 3106-3110.
block copolymer structural color[J]. ACS Nano, 2015, 9(12): 12158-
12167. (下转第 812 页)