Page 38 - 201905
P. 38

·806·                             精细化工   FINE CHEMICALS                                  第 36 卷

                 switching properties[J]. Advanced Functional Materials, 2007, 17(15):   [28]  Lu Y, Xia H,  Zhang G, et al. Electrically tunable block copolymer
                 2779-2786.                                        photonic  crystals  with  a  full  color  display[J].  Journal  of  Materials
            [7]   Li B, Zhou J, Li L,et al. One-dimensional photonic band gap structure   Chemistry, 2009, 19(33): 5952-5955.
                 in abalone shell[J]. Chinese Science Bulletin, 2005, 50(14): 1529-1531.   [29]  Lu Y, Meng C, Xia H, et al. Fast electrically driven photonic crystal
            [8]   Sun  J,  Bharat  B,  Tong  J.  Structural  coloration  in  nature[J].  RSC   based on charged block copolymer[J]. Journal of Materials Chemistry C,
                 Advances, 2013, 3: 14862-14889.                   2013, 1(38): 6107-6111.
            [9]   Yoshioka S, Matsuhana B, Tanaka S,  et al. Mechanism of variable   [30]  Park  T H, Yu S,  Cho S H, et al. Block copolymer structural color
                 structural  colour  in  the  neon  tetra:  quantitative  evaluation  of the   strain sensor[J]. NPG Asia Materials, 2018, 10(4): 328-339.
                 Venetian  blind  model[J].  Journal  of  the  Royal  Society  Interface,   [31]  Kang H S, Lee J, Cho S M, et al. Printable and rewritable full block
                 2010, 8(54): 56-66.                               copolymer  structural  color[J].  Advanced  Materials,  2017,  29(29).
            [10]  Yue  Y,  Gong  J  P.  Tunable  one-dimensional  photonic  crystals from   DOI: 10.1002/adma.201700084
                 soft  materials[J].  Journal  of  Photochemistry  and  Photobiology  C:   [32]  Lee W, Yoon J, Thomas E L, et al. Dynamic changes in structural
                 Photochemistry Reviews, 2015, 23: 45-67.          color  of  a  lamellar  block  copolymer  photonic  gel  during  solvent
            [11]  Wang Y, Xu X, Xu P, et al. Controllable self-assembly of polystyrene-   evaporation[J]. Macromolecules, 2013, 46(16): 6528-6532.
                 block-poly(2-vinylpyridine)[J].  Polymer  International,  2018,  67(6):   [33]  Wu C, Tsai P, Wang T, et al. Flexible or robust amorphous photonic
                 619-626.                                          crystals from network-forming block copolymers for sensing solvent
            [12]  Czarnecki S, Bertin A. Hybrid silicon-based organic/inorganic block   vapors[J]. Analytical Chemistry, 2018, 90(7): 4847-4855.
                 copolymers  with  sol-gel  active  moieties:  Synthetic  advances,  self-   [34]  Huang Y, Zheng Y, Pribyl J, et al. A versatile approach to different
                 assembly  and  applications  in  biomedicine  and  materials  science[J].   colored  photonicfilms  generated  from  block  copolymers  and
                 Chemistry-A European Journal, 2018, 24(14): 3354-3373.   theirconversion  into  polymer-grafted  nanoplatelets[J].  Journal  of
            [13]  Richardson J J, Bjornmalm M, Caruso F. Technology-driven layer-   Materials Chemistry C, 2017, 5(38): 9873-9878.
                 by-layer assembly of nanofilms[J]. Science, 2015, 348(6233): 6223.   [35]  Song D, Jacucci G, Dundar F, et al. Photonic resins: Designing optical
            [14]  Wang  L,  Zhang  S,  Lutkenhaus  J  L,  et al.  All  nanoparticle-based   appearance  via  block  copolymer  self-assembly[J].  Macromolecules,
                 P(MMA–AA)/TiO 2  one-dimensional  photonic  crystal  films  with   2018, 51(6): 2395-2400.
                 tunable structural colors[J]. Journal of Materials Chemistry C, 2017,   [36]  Kosonen  H,  Valkama  S,  Ruokolainen  J,  et al.  One-dimensional
                 5(32): 8266-8272.                                 optical  reflectors  based  on  self-organization  of  polymeric  comb-
            [15]  Karaman  M,  Kooi  S  E,  Gleason  K  K.  Vapor  deposition  of  hybrid   shaped supramolecules[J]. European Physical Journal E, 2003, 10(1):
                 organic-inorganic  dielectric  Bragg  mirrors  having  rapid  and   69-75.
                 reversibly  tunable  optical  reflectance[J].  Chemistry  of  Materials,   [37]  Valkama  S,  Kosonen  H,  Ruokolainen  J,  et al.  Self-assembled
                 2008, 20(6): 2262-2267.                           polymeric solid films with temperature-induced large and reversible
            [16]  Urbas  A,  Klosterman  J,  Tondiglia  V,  et al.  Optically  switchable   photonic-bandgap switching[J]. Nature Materials, 2004, 3(12): 872-
                 Bragg reflectors[J]. Advanced Materials, 2004, 16(16): 1453-1456.   876.
            [17]  Urbas A, Tondiglia V, Natarajan L, et al. Optically switchable liquid   [38]  Boyle B M,  French T A,  Pearson  R  M,  et al.  Structural  color  for
                 crystal  photonic  structures[J].  Journal  of  the  American  Chemical   additive  manufacturing:  3D-printed  photonic  crystals  from  block
                 Society, 2004, 126(42): 13580-13581.              copolymers[J]. ACS Nano, 2017, 11(3): 3052-3058.
            [18]  Sandrock M, Wiggins M, Shirk J S, et al. A widely tunable refractive   [39]  Tsujii  K,  Hayakawa  M,  Onda  T,  et al.  A  novel  hybrid  material  of
                 index in a nanolayered photonic material[J]. Applied Physics Letters,   polymer  gels  and  bilayer  membranes[J].  Macromolecules,  1997,
                 2004, 84(18): 3621-3623.                          30(24): 7397-7402.
            [19]  Mao G, Andrews J, Crescimanno M, et al. Co-extruded mechanically   [40]  Haque  M  A,  Kurokawa  T,  Gong  J.  Anisotropic  hydrogel  based  on
                 tunable  multilayer  elastomer  laser[J].  Optical  Materials  Express,   bilayers:  Color,  strength,  toughness,  and  fatigue  resistance[J].  Soft
                 2011, 1(1): 108-114.                              Matter, 2012, 8(31): 8008-8016.
            [20]  Yablonovitch  E.  Engineered  omnidirectional  external-reflectivity   [41]  Haque M A, Kamita G, Kurokawa T, et al. Unidirectional alignment
                 spectra  from  one-dimensional  layered  interference  filters[J].  Optics   of  lamellar  bilayer  in  hydrogel:  one-dimensional  swelling,  anisotropic
                 Letters, 1998, 23(21): 1648-1649.                 modulus,  and  stress/strain  tunable  structural  color[J].  Advanced
            [21]  Qian Hujun (钱虎军). Dissipative particle dynamics study of block   Materials, 2010, 22(45): 5110-5114.
                 copolymer microphase separation and the surface diffusion dynamics   [42]  Haque  M  A,  Kurokawa  T,  Kamita  G,  et al.  Lamellar  bilayers  as
                 of polymer chain[D]. Changchun: JiLin University (吉林大学), 2007.   reversible  sacrificial  bonds  to  toughen  hydrogel:  Hysteresis,  self-
            [22]  Edrington A C, Urbas A M, Derege P, et al. Polymer-based photonic   recovery, fatigue resistance, and crack blunting[J]. Macromolecules,
                 crystals[J]. Advanced Materials, 2001, 13(6): 421-425.   2011, 44(22): 8916-8924.
            [23]  Kang  Y,  Walish  J  J,  Gorishnyy  T,  et al.  Broad-wavelength-range   [43]  Yue Y, Kurokawa T, Haque M A, et al. Mechano-actuated ultrafast
                 chemically tunable block-copolymer photonic gels[J]. Nature Materials,   full-colour  switching  in  layered  photonic  hydrogels[J].  Nature
                 2007, 6(12): 957-960.                             Communications, 2014, 5: 4659.
            [24]  Chan E P, Walish J J, Thomas E L, et al. Block copolymer photonic   [44]  Wang Ru (王茹), Wang Yongxin (王永鑫), Chen Chongyi (陈重一).
                 gel  for  mechanochromic  sensing[J].  Advanced  Materials,  2011,   Different  systems  of  double-network  gels  and  their  reinforcing
                 23(40): 4702-4706.                                mechanisms[J]. Material Review (材料导报), 2015, 29(12): 41-46.
            [25]  Walish J J, Fan Y, Centrone A, et al. Controlling thermochromism in   [45]  Haque  M  A,  Kurokawa  T,  Kamita  G,  et al.  Rapid  and  reversible
                 a  photonic  block  copolymer  gel  [J].  Macromolecular  Rapid   tuning  of  structural  color  of  a  hydrogel  over  the  entire  visible
                 Communications, 2012, 33(18): 1504-1509.          spectrum  by  mechanical  stimulation[J].  Chemistry  of  Materials,
            [26]  Walish  J  J,  Kang  Y,  Mickiewicz  R  A,  et al.  Bioinspired   2011, 23(23): 5200-5207.
                 electrochemically  tunable  block  copolymer  full  color  pixels[J].   [46]  Yue Y F, Haque M A, Kurokawa T, et al. Lamellar hydrogels with
                 Advanced Materials, 2009, 21(30): 3078-3081.      high toughness and ternary tunable photonic stop-band[J]. Advanced
            [27]  Park T J, Hwang S K, Park S, et al. Electrically tunable soft-solid   Materials, 2013, 25(22): 3106-3110.
                 block copolymer structural color[J]. ACS Nano, 2015, 9(12): 12158-
                 12167.                                                                       (下转第 812 页)
   33   34   35   36   37   38   39   40   41   42   43