Page 44 - 201905
P. 44
·812· 精细化工 FINE CHEMICALS 第 36 卷
occupancy in lithium niobate single crystal[J]. Inorganic Chemistry, temperature phase transition[J]. Nanoscale, 2016, 8(15): 8160-8169.
2013, 52(17): 10206-10210. [19] You F T, Huang S H, Liu S M, et al. VUV excited luminescence of
3+
[14] Li Gong (李宫), Chen Kunfeng (陈昆峰), Jin Jingyi (金京一), et al. MGdF 4:Eu (M=Na, K, NH 4)[J]. Journal of Luminescence, 2004,
3+
La -doped NiCo layered double hydroxide nanosheets and their 110(3): 95-99.
supercapacitive performance[J]. Chinese Journal of Applied [20] Tian B N, Chen B J, Tian Y, et al. Visible quantum cutting in
3+
Chemistry (应用化学), 2017, 34(1): 71-75. BaGd 2ZnO 5:Eu phosphor[J]. Ceram Int, 2004, 38: 3537-3540.
[15] Peter A J, Banu I B S. Enhanced photoluminescence of [21] Lai Zhenyu (赖振宇), Xu Guangliang (徐光亮), Liu Min (刘敏), et
3+
Li 3Ba 2Gd 3(MoO 4) 8:Eu red phosphor synthesized by al. Effects of microwave heating on preparation of Mn-Zn ferrite
mechanochemically assisted direct solid state reaction method at nanoparticles[J]. Inorganic Chemicals Industry (无机盐工业), 2007,
room temperature[J]. J Mater Sci Mater Electron, 2015, 26(4): 39(6): 15-17.
2045-2052. [22] Li Guifang (李桂芳), Yang Qian (杨倩), Wei Yunge (卫云鸽).
[16] Wu H M, Chen H, Liu Y F, et al. Highly uniform NaLa(MoO 4) 2: Synthesis and photoluminescence properties of double perovskite
3+
3+
Eu microspheres: microwave-assisted hydrothermal synthesis, NaLaMgWO 6:Eu red phosphors[J]. Journal of Inorganic Materials
growthmechanism and enhanced luminescent properties[J]. J Mater (无机材料学报), 2017, 32(9): 936-942.
Sci Mater Electron, 2014, 25:3109-3115. [23] Huang S H, Lou L R. Concentration dependence of sensitizer
[17] Liao J H, Zhou D, Yang B, et al. Sol-gelpreparation and fluorescence intensity in energy transfer[J]. Chinese Journal of
3+
photoluminescence properties of CaLa 2(MoO 4) 4: Eu phosphors[J]. Luminescence, 1990, 11(1): 1-7.
Journal of Luminescence, 2013, 134(1): 533-538. [24] Tian Y, Chen B J, Tian B N, et al. Concentration dependent
[18] Ghosh P, Mudring A V. Phase selective synthesis of quantum cutting luminescence and energy transfer of flower-like Y 2(MoO 4) 3:Dy 3+
nanophosphors and the observation of a spontaneous room phosphors[J]. J Alloys Compd, 2011, 509(20): 6096-6101.
(上接第 806 页) nanocomposites for mechanochromic sensing[J]. ACS Applied
Materials & Interfaces, 2015, 7(6): 3641-3646.
[47] Niu J, Wang D, Qin H, et al. Novel polymer-free iridescent lamellar
[57] Hu Z, Tao C, Wang F, et al. Flexible metal-organic framework-based
hydrogel for two-dimensional confined growth of ultrathin gold
one-dimensional photonic crystals[J]. Journal of Materials Chemistry
membranes[J]. Nature Communications, 2014, 5(1): 3313.
C, 2015, 3(1): 211-216.
[48] Ma H, Zhu M, Luo W, et al. Free-standing, flexible thermochromic
[58] Ma W, Li S, Kou D, et al. Flexible, self-standing and patternable
films based on one-dimensional magnetic photonic crystals[J]. P(MMA-BA)/TiO 2 photonic crystals with tunable and bright structural
Journal of Materials Chemistry C, 2015, 3(12): 2848-2855. colors[J]. Dyes and Pigments, 2019, 160: 740-746.
[49] Wang X, Wang C, Zhou Z, et al. Robust mechanochromic elastic [59] Xu D, Xu Q, Wang K, et al. Fabrication of free-standing hierarchical
one-dimensional photonic hydrogels for touch sensing and flexible carbon nanofiber/graphene oxide/polyaniline films for supercapacitors[J].
displays[J]. Advanced Optical Materials, 2014, 2(7): 652-662. ACS Applied Materials & Interfaces. 2013, 6(1): 200-209.
[50] Kimura M, Okahara K, Miyamoto T. Tunable multilayer-film [60] Liu C, Liu X, Xuan H, et al. A smart colorful supercapacitor with one
distributed-Bragg-reflector filter[J]. Journal of Applied Physics, dimensional photonic crystals[J]. Scientific Reports, 2016, 5(1): 18419.
1979, 50(3): 1222-1225. [61] Calvo M E, Sánchez Sobrado O, Lozano G, et al. Molding with
[51] Komikado T, Inoue A, Masuda K, et al. Multi-layered mirrors nanoparticle-based one-dimensional photonic crystals: A route to
fabricated by spin-coating organic polymers[J]. Thin Solid Films, flexible and transferable Bragg mirrors of high dielectric contrast[J].
2007, 515(7/8): 3887-3892. Journal of Materials Chemistry, 2009, 19(20): 3144-3148.
[52] Sandrock M, Wiggins M, Shirk J S, et al. A widely tunable refractive [62] Calvo M E, Míguez H. Flexible, adhesive, and biocompatible Bragg
index in a nanolayered photonic material[J]. Applied Physics Letters, mirrors based on polydimethylsiloxane infiltrated nanoparticle
2004, 84(18): 3621-3623. multilayers[J]. Chemistry of Materials, 2010, 22(13): 3909-3915.
[53] Kazmierczak T, Song H, Hiltner A, et al. Polymeric one-dimensional [63] Sánchez-Sobrado O, Calvo M E, Míguez H. Versatility and
photonic crystals by continuous coextrusion[J]. Macromolecular multifunctionality of highly reflecting Bragg mirrors based on
Rapid Communications, 2007, 28(23): 2210-2216. nanoparticle multilayers[J]. Journal of Materials Chemistry, 2010,
[54] Jinhan C, Kookheon C, Jong-Dal H. Fabrication of highly ordered 20(6): 8240-8246.
multilayer films using a spin self-assembly method[J]. Advanced [64] Castro-Smirnov J R, Calvo M E, Míguez H. Selective UV reflecting
Materials, 2001, 13(14): 1076-1078. mirrors based on nanoparticle multilayers[J]. Advanced Functional
[55] Jeon S, Chiappelli M C, Hayward R C. Photocrosslinkable nanocomposite Materials, 2013, 23(22): 2805-2811.
multilayers for responsive 1D photonic crystals[J]. Advanced Functional [65] Li Y, Calvo M E, Míguez H. Integration of photonic crystals into
Materials, 2016, 26(5): 722-728. flexible dye solar cells: A route toward bendable and adaptable
[56] Howell I R, Li C, Colella N S, et al. Strain-tunable one dimensional optoelectronic devices displaying structural color and enhanced
photonic crystals based on zirconium dioxide/slide-ring elastomer efficiency[J]. Advanced Optical Materials, 2016, 4(3): 464-471.