Page 44 - 201905
P. 44

·812·                             精细化工   FINE CHEMICALS                                  第 36 卷

                 occupancy in lithium niobate single crystal[J]. Inorganic Chemistry,   temperature phase transition[J]. Nanoscale, 2016, 8(15): 8160-8169.
                 2013, 52(17): 10206-10210.                    [19]  You F T, Huang S H, Liu S M, et al. VUV excited luminescence of
                                                                         3+
            [14]  Li Gong (李宫), Chen Kunfeng (陈昆峰), Jin Jingyi (金京一), et al.   MGdF 4:Eu  (M=Na,  K, NH 4)[J].  Journal  of  Luminescence,  2004,
                  3+
                 La -doped  NiCo  layered  double  hydroxide  nanosheets  and  their   110(3): 95-99.
                 supercapacitive  performance[J].  Chinese  Journal  of  Applied   [20]  Tian  B  N,  Chen  B  J,  Tian  Y,  et al.  Visible  quantum  cutting  in
                                                                            3+
                 Chemistry (应用化学), 2017, 34(1): 71-75.             BaGd 2ZnO 5:Eu  phosphor[J]. Ceram Int, 2004, 38: 3537-3540.
            [15]  Peter  A  J,  Banu  I  B  S.  Enhanced  photoluminescence  of   [21]  Lai Zhenyu (赖振宇), Xu Guangliang (徐光亮), Liu Min (刘敏), et
                              3+
                 Li 3Ba 2Gd 3(MoO 4) 8:Eu    red   phosphor   synthesized   by   al.  Effects  of  microwave  heating  on  preparation  of  Mn-Zn  ferrite
                 mechanochemically  assisted  direct  solid  state  reaction  method  at   nanoparticles[J]. Inorganic Chemicals Industry (无机盐工业), 2007,
                 room  temperature[J].  J  Mater  Sci  Mater  Electron,  2015,  26(4):   39(6): 15-17.
                 2045-2052.                                    [22]  Li  Guifang  (李桂芳),  Yang  Qian  (杨倩),  Wei  Yunge  (卫云鸽).
            [16]  Wu H M, Chen H, Liu Y F, et al. Highly uniform NaLa(MoO 4) 2:   Synthesis  and  photoluminescence  properties  of  double  perovskite
                  3+
                                                                             3+
                 Eu   microspheres:  microwave-assisted  hydrothermal  synthesis,   NaLaMgWO 6:Eu  red phosphors[J]. Journal of Inorganic Materials
                 growthmechanism  and  enhanced  luminescent  properties[J].  J  Mater   (无机材料学报), 2017, 32(9): 936-942.
                 Sci Mater Electron, 2014, 25:3109-3115.       [23]  Huang  S  H,  Lou  L  R.  Concentration  dependence  of  sensitizer
            [17]  Liao  J  H,  Zhou  D,  Yang  B,  et al.  Sol-gelpreparation  and   fluorescence  intensity  in  energy  transfer[J].  Chinese  Journal  of
                                                 3+
                 photoluminescence properties of CaLa 2(MoO 4) 4: Eu  phosphors[J].   Luminescence, 1990, 11(1): 1-7.
                 Journal of Luminescence, 2013, 134(1): 533-538.     [24]  Tian  Y,  Chen  B  J,  Tian  B  N,  et al.  Concentration  dependent
            [18]  Ghosh P, Mudring A V. Phase selective synthesis of quantum cutting   luminescence  and    energy  transfer  of  flower-like  Y 2(MoO 4) 3:Dy 3+
                 nanophosphors  and  the  observation  of  a  spontaneous  room   phosphors[J]. J Alloys Compd, 2011, 509(20): 6096-6101.


            (上接第 806 页)                                            nanocomposites  for  mechanochromic  sensing[J].  ACS  Applied

                                                                   Materials & Interfaces, 2015, 7(6): 3641-3646.
            [47]  Niu J, Wang D, Qin H, et al. Novel polymer-free iridescent lamellar
                                                               [57]  Hu Z, Tao C, Wang F, et al. Flexible metal-organic framework-based
                 hydrogel  for  two-dimensional  confined  growth  of  ultrathin  gold
                                                                   one-dimensional photonic crystals[J]. Journal of Materials Chemistry
                 membranes[J]. Nature Communications, 2014, 5(1): 3313.
                                                                   C, 2015, 3(1): 211-216.
            [48]  Ma H, Zhu M, Luo W, et al. Free-standing, flexible thermochromic
                                                               [58]  Ma  W,  Li  S,  Kou  D,  et al.  Flexible,  self-standing  and  patternable
                 films  based  on  one-dimensional  magnetic  photonic  crystals[J].   P(MMA-BA)/TiO 2  photonic  crystals  with  tunable  and  bright  structural
                 Journal of Materials Chemistry C, 2015, 3(12): 2848-2855.   colors[J]. Dyes and Pigments, 2019, 160: 740-746.
            [49]  Wang  X,  Wang  C,  Zhou  Z,  et al.  Robust  mechanochromic  elastic   [59]  Xu D, Xu Q, Wang K, et al. Fabrication of free-standing hierarchical
                 one-dimensional  photonic  hydrogels  for  touch  sensing  and  flexible   carbon nanofiber/graphene oxide/polyaniline films for supercapacitors[J].
                 displays[J]. Advanced Optical Materials, 2014, 2(7): 652-662.   ACS Applied Materials & Interfaces. 2013, 6(1): 200-209.
            [50]  Kimura  M,  Okahara  K,  Miyamoto  T.  Tunable  multilayer-film   [60]  Liu C, Liu X, Xuan H, et al. A smart colorful supercapacitor with one
                 distributed-Bragg-reflector  filter[J].  Journal  of  Applied  Physics,   dimensional photonic crystals[J]. Scientific Reports, 2016, 5(1): 18419.
                 1979, 50(3): 1222-1225.                       [61]  Calvo  M  E,  Sánchez  Sobrado  O,  Lozano  G,  et al.  Molding  with
            [51]  Komikado  T,  Inoue  A,  Masuda  K,  et al.  Multi-layered  mirrors   nanoparticle-based  one-dimensional  photonic  crystals:  A  route  to
                 fabricated  by  spin-coating  organic  polymers[J].  Thin  Solid  Films,   flexible and transferable Bragg mirrors of high dielectric contrast[J].
                 2007, 515(7/8): 3887-3892.                        Journal of Materials Chemistry, 2009, 19(20): 3144-3148.
            [52]  Sandrock M, Wiggins M, Shirk J S, et al. A widely tunable refractive   [62]  Calvo M E, Míguez H. Flexible, adhesive, and biocompatible Bragg
                 index in a nanolayered photonic material[J]. Applied Physics Letters,   mirrors  based  on  polydimethylsiloxane  infiltrated  nanoparticle
                 2004, 84(18): 3621-3623.                          multilayers[J]. Chemistry of Materials, 2010, 22(13): 3909-3915.
            [53]  Kazmierczak T, Song H, Hiltner A, et al. Polymeric one-dimensional   [63]  Sánchez-Sobrado  O,  Calvo  M  E,  Míguez  H.  Versatility  and
                 photonic  crystals  by  continuous  coextrusion[J].  Macromolecular   multifunctionality  of  highly  reflecting  Bragg  mirrors  based  on
                 Rapid Communications, 2007, 28(23): 2210-2216.    nanoparticle  multilayers[J].  Journal  of  Materials  Chemistry,  2010,
            [54]  Jinhan  C,  Kookheon  C,  Jong-Dal  H.  Fabrication  of  highly  ordered   20(6): 8240-8246.
                 multilayer  films  using  a  spin  self-assembly  method[J].  Advanced   [64]  Castro-Smirnov J R, Calvo M E, Míguez H. Selective UV reflecting
                 Materials, 2001, 13(14): 1076-1078.               mirrors  based  on  nanoparticle  multilayers[J].  Advanced  Functional
            [55]  Jeon S, Chiappelli M C, Hayward R C. Photocrosslinkable nanocomposite   Materials, 2013, 23(22): 2805-2811.
                 multilayers for responsive 1D photonic crystals[J]. Advanced Functional   [65]  Li  Y,  Calvo  M  E,  Míguez  H.  Integration  of  photonic  crystals  into
                 Materials, 2016, 26(5): 722-728.                  flexible  dye  solar  cells:  A  route  toward  bendable  and  adaptable
            [56]  Howell I R, Li C, Colella N S, et al. Strain-tunable one dimensional   optoelectronic  devices  displaying  structural  color  and  enhanced
                 photonic  crystals  based  on  zirconium  dioxide/slide-ring  elastomer   efficiency[J]. Advanced Optical Materials, 2016, 4(3): 464-471.
   39   40   41   42   43   44   45   46   47   48   49