Page 234 - 201906
P. 234

·1240·                            精细化工   FINE CHEMICALS                                  第 36 卷
















                                  图 6    PP1(a)、PP2(b)、PP7(c)复合材料的断面扫描电镜图
                             Fig. 6    SEM images of fractured surface of PP1(a), PP2(b) and PP7(c) composites

            3    结论                                                performance of ZnO nanorods coupled by two-dimensional α-MoO 3
                                                                   nanoflakes  under  UV  and  visible  light  irradiation[J].  Chemistry-A
                                                                   European Journal, 2016, 22(36): 12777-12784.
                 (1)TG 分析结果表明,一维纳米线和纳米 ATH                     [11]  Lin J J,  Luo  Z  Z, Liu J J,  et al.  Photocatalytic  degradation  of
                                                                   methylene  blue  in  aqueous  solution  by  using  ZnO-SnO 2
            的引入,提高了 NWs/ATH/PP 复合材料的热稳定性。                          nanocomposites[J]. Materials Science in Semiconductor Processing,
                 (2)LOI 和 CCT 分析结果表明,当 ZnO 纳米                      2018, 87: 24-31.
                                                               [12]  Hu  S,  Hu  J,  Yu  C,  et al.  2D/1D  heterostructure  of  g-C 3N 4
            线的质量分数为 3.75%,MoO 3 纳米线的质量分数为                          nanosheets/CdS  nanowires  as  effective  photo-activated  support  for
                                                                   photoelectrocatalytic  oxidation  of  methanol[J].  Catalysis  Today,
            3.25%,纳米 ATH 的质量分数为 21.00%时,复合材                        2018, 315: 36-45.
            料的 LOI 达到了 25.3%,NWs/ATH/PP 复合材料的                  [13]  Li  H  X,  Dong  W,  Zhang  J,  et al.  MoS 2  nanosheet/ZnO  nanowire
                                                                   hybrid  nanostructures  for  photoelectrochemical  water  splitting[J].
            残重率为 24.6%,复合材料的 PHRR 较纯 PP 下降                         Journal of the American Ceramic Society, 2018, 101(9): 3989-3996.
                                                               [14]  Kong L, Tu K, Guan H, et al. Growth of high-density ZnO nanorods
            54.3%,THR 下降 25.7%,实验结果表明,ZnO/MoO 3                    on  wood  with  enhanced  photostability,  flame  retardancy  and  water
            纳米线和纳米 ATH 可明显提高聚丙烯基复合材料                               repellency[J]. Applied Surface Science, 2017, 407: 479-484.
                                                               [15]  Han Y Q, Li T X, Gao B, et al. Synergistic effects of zinc oxide in
            的阻燃性能,可作为热塑性树脂纳米阻燃剂使用。                                 montmorillonite  flame-retardant  polystyrene  nanocomposites[J].
                                                                   Journal of Applied Polymer Science, 2016, 133(10): 43047.
            参考文献:                                              [16]  Xu W Z, Li C H, Hu Y X, et al. Synthesis of MoO 3 with different
                                                                   morphologies  and  their  effects  on  flame  retardancy  and  smoke
            [1]   Li  X,  Zhao  Z,  Wang  Y,  et al.  Highly  efficient  flame  retardant,   suppression  of  polyurethane  elastomer[J].  Polymers  for  Advanced
                 flexible, and strong adhesive intumescent coating on polypropylene using   Technologies, 2016, 27(7): 964-972.
                 hyperbranched  polyamide[J].  Chemical  Engineering  Journal,  2017,   [17]  Xiang Qun (向群), Pan Qingyi (潘庆谊), Xu Jiaqiang (徐甲强), et
                 324: 237-250.                                     al. Solvothermal preparation of zinc oxide nanowires[J]. Journal of
            [2]   Nie S, Liu L, Dai G, et al. Investigation on pyrolysis of intumescent   Inorganic Chemistry (无机化学学报), 2007, 23(2): 369-372.
                 flame-retardant polypropylene (PP) composites based on synchrotron   [18]  Bai S L, Chen C, Tian Y, et al. Facile synthesis of α-MoO 3 nanorods
                 vacuum  ultraviolet  photoionization  combined  with  molecular-beam   with  high  sensitivity  to  CO  and  intrinsic  sensing  performance[J].
                 mass spectrometry[J]. Journal of Thermal Analysis and Calorimetry,   Materials Research Bulletin, 2015, 64: 252-256.
                 2017, 130(2): 1003-1009.                      [19]  Standardization  Administration  of  the  People's  Republic  of  China.
            [3]   Qin  Z,  Li  D,  Zhang  W,  et al.  Surface  modification  of  ammonium   GB/T2406.2—2009:Plastics-determination  of  burning  behavior  by
                 polyphosphate with vinyltrimethoxysilane: Preparation, characterization,   oxygen  index-Part  2:  Ambient-temperature  test[S].  Beijing:
                 and  its  flame  retardancy  in  polypropylene[J].  Polymer  Degradation   Standards Press of China(中国标准出版社), 2009: 6-15.
                 and Stability, 2015, 119: 139-150.            [20]  International  Organization  for  Standardization.  ISO5660—1:2002:
            [4]   Zhou Pengxin (周鹏鑫), Huang Li (黄莉), Ma Delong (马德龙), et   Reaction-to-fire tests-Heat release, smoke production and mass loss
                 al. Preparation and properties of organic palygorskite clay-intumescent   rate-Part  1:  Heat  release  rate(conecalorimeter  method)[S].
                 flame retardant polypropylene composites[J]. Fine Chemicals (精细  International Standards Press, 2002: 3-31.
                 化工), 2015, 32(9): 961-967.                    [21]  Standardization  Administration  of  the  People's  Republic  of  China.
            [5]   Feng C, Liang M, Jiang J, et al. Synergistic effect of a novel triazine   GB/T1040.2—2006: Plastics-determination of tensile properties-Part
                 charring agent and ammonium polyphosphate on the flame retardant   2:  Test  conditions for  moulding  and  extruded plastics  [S].  Beijing:
                 properties of halogen-free flame retardant polypropylene composites   Standards Press of China(中国标准出版社), 2006: 3 -5.
                 [J]. Thermochimica Acta, 2016, 627-629: 83-90.   [22]  Standardization  Administration  of  the  People's  Republic  of  China.
            [6]   Xing  W,  Wang  X,  Song  L,  et al.  Enhanced  thermal  stability  and   GB/T1843—2008: Plastics-determination of izod impact strength[S].
                 flame  retardancy  of  polystyrene  by  incorporating  titanium  dioxide   Beijing: Standards Press of China (中国标准出版社), 2008: 2-7.
                 nanotubes via  radical  adsorption  effect[J].  Composites  Science  and   [23]  Samanta A K, Bhattacharyya R, Jose S, et al. Fire retardant finish of
                 Technology, 2016, 133: 15-22.                     jute fabric with nano zinc oxide[J]. Cellulose, 2017, 24(2): 1143-1157.
            [7]   Wang  F,  Wang  Y,  Dong  Q,  et al.  Core-shell  expandable   [24]  Guo Junhong (郭军红), Xu Fen (许芬), Guo Yongliang (郭永亮), et
                 graphite@aluminum  hydroxide  as  a  flame-retardant  for  rigid   al. Synergistic flame retardant effect of Al(OH) 3-phosphorus hybrid
                 polyurethane  foams[J].  Polymer  Degradation  and  Stability,  2017,   polymer/polystyrene  composite[J].  Materials  Review  (材料导报),
                 146: 267-276.                                     2018, (14): 2497-2502.
            [8]   Pan Y T, Wang X, Li Z, et al. A facile approach towards large-scale   [25]  Gao Dangge (高党鸽), Zhang Yahong (张亚红), Lv Bin (吕斌), et
                 synthesis  of  hierarchically  nanoporous  SnO 2@Fe 2O 30D/1D  hybrid   al.  Preparation  of  PAA/ATP  nanocomposites  and  their  flame
                 and  its  effect  on  flammability,  thermal  stability  and  mechanical   retardancy[J]. Fine Chemicals (精细化工), 2018, 35(2): 298-302.
                 property  of  flexible  poly  (vinyl  chloride)[J].  Composites,  Part B:   [26]  Hajibeygi M, Maleki M, Shabanian M, et al. New polyvinyl chloride
                 Engineering, 2017, 110: 46-55.                    (PVC) nanocomposite consisting of aromatic polyamide and chitosan
            [9]   Khandare L, Late D J. MoO 3-rGO nanocomposites for electrochemical   modified  ZnO  nanoparticles  with  enhanced  thermal  stability,  low
                 energy storage[J]. Applied Surface Science, 2017, 418: 2-8.   heat  release  rate  and  improved  mechanical  properties[J].  Applied
            [10]  Hang  D,  Sharma  K  H,  Chen  C,  et al.  Enhanced  photocatalytic   Surface Science, 2018, 439: 1163-1179.
   229   230   231   232   233   234   235   236   237   238   239