Page 234 - 201906
P. 234
·1240· 精细化工 FINE CHEMICALS 第 36 卷
图 6 PP1(a)、PP2(b)、PP7(c)复合材料的断面扫描电镜图
Fig. 6 SEM images of fractured surface of PP1(a), PP2(b) and PP7(c) composites
3 结论 performance of ZnO nanorods coupled by two-dimensional α-MoO 3
nanoflakes under UV and visible light irradiation[J]. Chemistry-A
European Journal, 2016, 22(36): 12777-12784.
(1)TG 分析结果表明,一维纳米线和纳米 ATH [11] Lin J J, Luo Z Z, Liu J J, et al. Photocatalytic degradation of
methylene blue in aqueous solution by using ZnO-SnO 2
的引入,提高了 NWs/ATH/PP 复合材料的热稳定性。 nanocomposites[J]. Materials Science in Semiconductor Processing,
(2)LOI 和 CCT 分析结果表明,当 ZnO 纳米 2018, 87: 24-31.
[12] Hu S, Hu J, Yu C, et al. 2D/1D heterostructure of g-C 3N 4
线的质量分数为 3.75%,MoO 3 纳米线的质量分数为 nanosheets/CdS nanowires as effective photo-activated support for
photoelectrocatalytic oxidation of methanol[J]. Catalysis Today,
3.25%,纳米 ATH 的质量分数为 21.00%时,复合材 2018, 315: 36-45.
料的 LOI 达到了 25.3%,NWs/ATH/PP 复合材料的 [13] Li H X, Dong W, Zhang J, et al. MoS 2 nanosheet/ZnO nanowire
hybrid nanostructures for photoelectrochemical water splitting[J].
残重率为 24.6%,复合材料的 PHRR 较纯 PP 下降 Journal of the American Ceramic Society, 2018, 101(9): 3989-3996.
[14] Kong L, Tu K, Guan H, et al. Growth of high-density ZnO nanorods
54.3%,THR 下降 25.7%,实验结果表明,ZnO/MoO 3 on wood with enhanced photostability, flame retardancy and water
纳米线和纳米 ATH 可明显提高聚丙烯基复合材料 repellency[J]. Applied Surface Science, 2017, 407: 479-484.
[15] Han Y Q, Li T X, Gao B, et al. Synergistic effects of zinc oxide in
的阻燃性能,可作为热塑性树脂纳米阻燃剂使用。 montmorillonite flame-retardant polystyrene nanocomposites[J].
Journal of Applied Polymer Science, 2016, 133(10): 43047.
参考文献: [16] Xu W Z, Li C H, Hu Y X, et al. Synthesis of MoO 3 with different
morphologies and their effects on flame retardancy and smoke
[1] Li X, Zhao Z, Wang Y, et al. Highly efficient flame retardant, suppression of polyurethane elastomer[J]. Polymers for Advanced
flexible, and strong adhesive intumescent coating on polypropylene using Technologies, 2016, 27(7): 964-972.
hyperbranched polyamide[J]. Chemical Engineering Journal, 2017, [17] Xiang Qun (向群), Pan Qingyi (潘庆谊), Xu Jiaqiang (徐甲强), et
324: 237-250. al. Solvothermal preparation of zinc oxide nanowires[J]. Journal of
[2] Nie S, Liu L, Dai G, et al. Investigation on pyrolysis of intumescent Inorganic Chemistry (无机化学学报), 2007, 23(2): 369-372.
flame-retardant polypropylene (PP) composites based on synchrotron [18] Bai S L, Chen C, Tian Y, et al. Facile synthesis of α-MoO 3 nanorods
vacuum ultraviolet photoionization combined with molecular-beam with high sensitivity to CO and intrinsic sensing performance[J].
mass spectrometry[J]. Journal of Thermal Analysis and Calorimetry, Materials Research Bulletin, 2015, 64: 252-256.
2017, 130(2): 1003-1009. [19] Standardization Administration of the People's Republic of China.
[3] Qin Z, Li D, Zhang W, et al. Surface modification of ammonium GB/T2406.2—2009:Plastics-determination of burning behavior by
polyphosphate with vinyltrimethoxysilane: Preparation, characterization, oxygen index-Part 2: Ambient-temperature test[S]. Beijing:
and its flame retardancy in polypropylene[J]. Polymer Degradation Standards Press of China(中国标准出版社), 2009: 6-15.
and Stability, 2015, 119: 139-150. [20] International Organization for Standardization. ISO5660—1:2002:
[4] Zhou Pengxin (周鹏鑫), Huang Li (黄莉), Ma Delong (马德龙), et Reaction-to-fire tests-Heat release, smoke production and mass loss
al. Preparation and properties of organic palygorskite clay-intumescent rate-Part 1: Heat release rate(conecalorimeter method)[S].
flame retardant polypropylene composites[J]. Fine Chemicals (精细 International Standards Press, 2002: 3-31.
化工), 2015, 32(9): 961-967. [21] Standardization Administration of the People's Republic of China.
[5] Feng C, Liang M, Jiang J, et al. Synergistic effect of a novel triazine GB/T1040.2—2006: Plastics-determination of tensile properties-Part
charring agent and ammonium polyphosphate on the flame retardant 2: Test conditions for moulding and extruded plastics [S]. Beijing:
properties of halogen-free flame retardant polypropylene composites Standards Press of China(中国标准出版社), 2006: 3 -5.
[J]. Thermochimica Acta, 2016, 627-629: 83-90. [22] Standardization Administration of the People's Republic of China.
[6] Xing W, Wang X, Song L, et al. Enhanced thermal stability and GB/T1843—2008: Plastics-determination of izod impact strength[S].
flame retardancy of polystyrene by incorporating titanium dioxide Beijing: Standards Press of China (中国标准出版社), 2008: 2-7.
nanotubes via radical adsorption effect[J]. Composites Science and [23] Samanta A K, Bhattacharyya R, Jose S, et al. Fire retardant finish of
Technology, 2016, 133: 15-22. jute fabric with nano zinc oxide[J]. Cellulose, 2017, 24(2): 1143-1157.
[7] Wang F, Wang Y, Dong Q, et al. Core-shell expandable [24] Guo Junhong (郭军红), Xu Fen (许芬), Guo Yongliang (郭永亮), et
graphite@aluminum hydroxide as a flame-retardant for rigid al. Synergistic flame retardant effect of Al(OH) 3-phosphorus hybrid
polyurethane foams[J]. Polymer Degradation and Stability, 2017, polymer/polystyrene composite[J]. Materials Review (材料导报),
146: 267-276. 2018, (14): 2497-2502.
[8] Pan Y T, Wang X, Li Z, et al. A facile approach towards large-scale [25] Gao Dangge (高党鸽), Zhang Yahong (张亚红), Lv Bin (吕斌), et
synthesis of hierarchically nanoporous SnO 2@Fe 2O 30D/1D hybrid al. Preparation of PAA/ATP nanocomposites and their flame
and its effect on flammability, thermal stability and mechanical retardancy[J]. Fine Chemicals (精细化工), 2018, 35(2): 298-302.
property of flexible poly (vinyl chloride)[J]. Composites, Part B: [26] Hajibeygi M, Maleki M, Shabanian M, et al. New polyvinyl chloride
Engineering, 2017, 110: 46-55. (PVC) nanocomposite consisting of aromatic polyamide and chitosan
[9] Khandare L, Late D J. MoO 3-rGO nanocomposites for electrochemical modified ZnO nanoparticles with enhanced thermal stability, low
energy storage[J]. Applied Surface Science, 2017, 418: 2-8. heat release rate and improved mechanical properties[J]. Applied
[10] Hang D, Sharma K H, Chen C, et al. Enhanced photocatalytic Surface Science, 2018, 439: 1163-1179.