Page 121 - 精细化工2019年第9期
P. 121
第 9 期 刘晓刚,等: Cu(x)/TiO 2 催化剂 NH 3 -SCR 低温脱硝性能 ·1849·
选择性催化还原 NO 反应。XPS 和 H 2 -TPR 表征结 [14] Boningari T, Pappas D K, Ettireddy P R, et al. Influence of SiO 2 on
M/TiO 2 (M = Cu, Mn, and Ce) formulations for low-temperature
果显示,铜物种以 Cu 2 O 和 CuO 的形式共存于 TiO 2
selective catalytic reduction of NO x with NH 3: Surface properties and
载体上;铜负载量影响催化剂的氧化还原能力和对 key components in relation to the activity of NO x reduction[J].
NO 的吸附-脱附性能。活性评价结果表明,催化剂 Industrial & Engineering Chemistry Research, 2015, 54(8): 2261-
2273.
对 NO 的吸附-脱附性能和氧化还原能力是影响催化 [15] Long R Q, Yang R T. Selective catalytic oxidation of ammonia to
剂脱硝性能的重要因素;Cu(6)/TiO 2 催化剂具有较好 nitrogen over Fe 2O 3-TiO 2 prepared with a sol-gel method[J]. Journal
的氧化还原性能和对 NO 吸附-脱附能力,NH 3 -SCR of Catalysis, 2002, 207(2): 158-165.
[16] Jeong S M, Kim S D. Removal of NO x and SO 2 by CuO/γ-Al 2O 3
低温脱硝活性较好,T 85 和 T 95 分别为 195 和 218 ℃, sorbent/catalyst in a fluidized-bed reactor[J]. Industrial & Engineering
NO 转化率大于 95%的活性窗口温度为 218~270 Chemistry Research, 2000, 39(6): 1911-1916.
[17] Xie G, Liu Z, Zhu Z, et al. Simultaneous removal of SO 2 and NO x
℃,宽度为 52 ℃。 from flue gas using a CuO/Al 2O 3 catalyst sorbent: I. Deactivation of
SCR activity by SO 2 at low temperatures[J]. Journal of Catalysis,
参考文献: 2004, 224(1): 36-41.
[1] Wang Hong (王虹), Li Bin (李滨), Lu Xuebin (卢学斌), et al. [18] Kwak J H, Tonkyn R, Tran D, et al. Size-dependent catalytic
Selective catalytic reduction of NO by methane over the Co/MOR performance of CuO on γ-Al 2O 3: NO reduction versus NH 3
catalysts in the presence of oxygen[J]. Journal of Fuel Chemistry and oxidation[J]. ACS Catalysis, 2012, 2(7): 1432-1440.
Technology (燃料化学学报), 2015, 43(9): 1106-1112. [19] Han J, Meeprasert J, Maitarad P, et al. Investigation of the
facet-dependent catalytic performance of Fe 2O 3/CeO 2 for the
[2] Yu T, Hao T, Fan D, et al. Recent NH 3-SCR mechanism research
selective catalytic reduction of NO with NH 3[J]. Journal of Physical
over Cu/SAPO-34 catalyst[J]. Journal of Physical Chemistry C,
Chemistry C, 2016, 120(3): 1523-1533.
2014, 118(13): 6565-6575.
[20] Gao R, Zhang D, Maitarad P, et al. Morphology-dependent properties
[3] Wang H, Cai K, Liu J, et al. Synthesis of nanosphere TiO 2 with
of MnO x/ZrO 2-CeO 2 nanostructures for the selective catalytic
flower-like micro-composition and its application for the selective
catalytic reduction of NO with NH 3 at low temperature[J]. RSC reduction of NO with NH 3[J]. Journal of Physical Chemistry C,
2013, 117(20): 10502-10511.
Advances, 2016, 6(87): 84294-84308. [21] Putluru S S R, Riisager A, Fehrmann R. The effect of acidic and
[4] Ren Cuitao (任翠涛), Hu Yingzhi (胡颖智), Wei Haoyu (魏浩宇), et redox properties of V 2O 5/CeO 2-ZrO 2 catalysts in selective catalytic
al. NH 3 selective catalytic reduction of NO over M/REY catalysts in reduction of NO by NH 3[J]. Catalysis Letters, 2009, 133(3/4):
presence of SO 2[J]. Journal of Fuel Chemistry and Technology (燃料
370-375.
化学学报), 2013, 41(10): 1241-1247.
[22] Foo R, Vazhnova T, Lukyanov D B, et al. Formation of reactive lewis
[5] Liu Z M, Li Y, Zhu T, et al. Selective catalytic reduction of NO x by
acid sites on Fe/WO 3-ZrO 2 catalysts for higher temperature SCR
NH 3 over Mn-promoted V 2O 5/TiO 2 catalyst[J]. Industrial &
applications[J]. Applied Catalysis B: Environmental, 2015, 162:
Engineering Chemistry Research, 2014, 53(33): 12964-12970.
174-179.
[6] Lee I Y, Kim D W, Lee J B, et al. A practical scale evaluation of [23] Zhang Xiangjun (张相俊), Liu Xiaogang (刘晓刚), Li Qingyong (李
sulfated V 2O 5/TiO 2 catalyst from metatitanic acid for selective 清雍), et al. Effect of carrier on the performance of copper based
catalytic reduction of NO by NH 3[J]. Chemical Engineering Journal, catalyst for selective catalytic reduction of NO with NH 3 at low
2002, 90(3): 267-272. temperature[J]. Journal of Fuel Chemistry and Technology (燃料化
[7] Xu L, Wang C, Chang H, et al. New insight into SO 2 poisoning and 学学报), 2017, 45(2): 220-226.
regeneration of CeO 2-WO 3/TiO 2 and V 2O 5-WO 3/TiO 2 catalysts for [24] Ndong L B B, Ibondou M P, Gu X, et al. Enhanced photocatalytic
low-temperature NH 3-SCR[J]. Environmental Science & Technology, activity of TiO 2 nanosheets by doping with Cu for chlorinated solvent
2018, 52(12): 7064-7071. pollutants degradation[J]. Industrial & Engineering Chemistry
[8] Wang C, Yang S, Chang H, et al. Dispersion of tungsten oxide on Research, 2014, 53(4): 1368-1376.
SCR performance of V 2O 5-WO 3/TiO 2: Acidity, surface species and [25] Zou H, Chen S, Lin W. Effect of pretreatment methods on the
catalytic activity[J]. Chemical Engineering Journal, 2013, 225: performance of Cu-Zr-Ce-O catalyst for CO selective oxidation[J].
520-527. Journal of Natural Gas Chemistry, 2008, 17(2): 208-211.
[9] He Y Y, Ford M E, Zhu M H, et al. Influence of catalyst synthesis [26] Chary K V R, Sagar G V, Naresh D, et al. Characterization and
method on selective catalytic reduction (SCR) of NO by NH 3 with reactivity of copper oxide catalysts supported on TiO 2-ZrO 2[J].
V 2O 5-WO 3/TiO 2 catalysts[J]. Applied Catalysis B: Environmental, Journal of Physical Chemistry B, 2005, 109(19): 9437-9444.
2016, 193: 141-150. [27] Landi G, Lisi L, Pirone R, et al. NO decomposition over La-doped
[10] Busca G, Larrubia M A, Arrighi L, et al. Catalytic abatement of NO x: Cu-ZSM5 monolith under adsorption-reaction conditions[J]. Applied
Chemical and mechanistic aspects[J]. Catalysis Today, 2005, Catalysis A: General, 2013, 464/465(16): 61-67.
107/108: 139-148. [28] Ma L, Cheng Y, Cavataio G, et al. Characterization of commercial
[11] Li Y, Deng J, Song W, et al. Nature of Cu species in Cu-SAPO-18 Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment
catalyst for NH 3-SCR: Combination of experiments and DFT for NH 3-SCR of NO x in diesel exhaust[J]. Chemical Engineering
calculations[J]. Journal of Physical Chemistry C, 2016, 120(27): Journal, 2013, 225(3): 323-330.
14669-14680. [29] Zhang G, Li Z, Zheng H, et al. Influence of the surface oxygenated
[12] Gao F, Wang Y, Washton N M, et al. Effects of alkali and alkaline groups of activated carbon on preparation of a nano Cu/AC catalyst
earth cocations on the activity and hydrothermal stability of Cu/SSZ- and heterogeneous catalysis in the oxidative carbonylation of
13 NH 3-SCR catalysts[J]. ACS Catalysis, 2015, 5(11): 6780-6791. methanol[J]. Applied Catalysis B: Environmental, 2015, 179: 95-105.
[13] Sreekanth P M, Pena D A, Smirniotis P G. Titania supported [30] Richter M, Fait M J G, Eckelt R, et al. Gas-phase carbonylation of
bimetallic transition metal oxides for low-temperature SCR of NO methanol to dimethyl carbonate on chloride-free Cu-precipitated
with NH 3[J]. Industrial & Engineering Chemistry Research, 2006, zeolite Y at normal pressure[J]. Journal of Catalysis, 2007, 245(1):
45(19): 6444-6449. 11-24.