Page 121 - 精细化工2019年第9期
P. 121

第 9 期                      刘晓刚,等: Cu(x)/TiO 2 催化剂 NH 3 -SCR 低温脱硝性能                      ·1849·


            选择性催化还原 NO 反应。XPS 和 H 2 -TPR 表征结                   [14]  Boningari T, Pappas D K, Ettireddy P R, et al. Influence of SiO 2 on
                                                                   M/TiO 2  (M  =  Cu,  Mn,  and  Ce)  formulations  for  low-temperature
            果显示,铜物种以 Cu 2 O 和 CuO 的形式共存于 TiO 2
                                                                   selective catalytic reduction of NO x with NH 3: Surface properties and
            载体上;铜负载量影响催化剂的氧化还原能力和对                                 key  components  in  relation  to  the  activity  of  NO x  reduction[J].
            NO 的吸附-脱附性能。活性评价结果表明,催化剂                               Industrial  &  Engineering  Chemistry  Research,  2015,  54(8):  2261-
                                                                   2273.
            对 NO 的吸附-脱附性能和氧化还原能力是影响催化                          [15]  Long  R  Q,  Yang  R  T.  Selective  catalytic  oxidation  of  ammonia  to
            剂脱硝性能的重要因素;Cu(6)/TiO 2 催化剂具有较好                         nitrogen over Fe 2O 3-TiO 2 prepared with a sol-gel method[J]. Journal
            的氧化还原性能和对 NO 吸附-脱附能力,NH 3 -SCR                         of Catalysis, 2002, 207(2): 158-165.
                                                               [16]  Jeong  S  M,  Kim  S  D.  Removal  of  NO x  and  SO 2  by  CuO/γ-Al 2O 3
            低温脱硝活性较好,T 85 和 T 95 分别为 195 和 218  ℃,                 sorbent/catalyst in a fluidized-bed reactor[J]. Industrial & Engineering
            NO 转化率大于 95%的活性窗口温度为 218~270                           Chemistry Research, 2000, 39(6): 1911-1916.
                                                               [17]  Xie G, Liu Z, Zhu Z, et al. Simultaneous removal of SO 2 and NO x
            ℃,宽度为 52  ℃。                                           from flue gas using a CuO/Al 2O 3 catalyst sorbent: I. Deactivation of
                                                                   SCR  activity  by  SO 2  at  low  temperatures[J].  Journal  of  Catalysis,
            参考文献:                                                  2004, 224(1): 36-41.
            [1]   Wang  Hong  (王虹),  Li  Bin  (李滨),  Lu  Xuebin  (卢学斌),  et al.   [18]  Kwak  J  H,  Tonkyn  R,  Tran  D,  et al.  Size-dependent  catalytic
                 Selective  catalytic  reduction  of  NO  by  methane  over  the  Co/MOR   performance  of  CuO  on  γ-Al 2O 3:  NO  reduction  versus  NH 3
                 catalysts in the presence of oxygen[J]. Journal of Fuel Chemistry and   oxidation[J]. ACS Catalysis, 2012, 2(7): 1432-1440.
                 Technology (燃料化学学报), 2015, 43(9): 1106-1112.     [19]  Han  J,  Meeprasert  J,  Maitarad  P,  et al.  Investigation  of  the
                                                                   facet-dependent  catalytic  performance  of  Fe 2O 3/CeO 2  for  the
            [2]   Yu T,  Hao  T, Fan  D,  et al.  Recent  NH 3-SCR  mechanism  research
                                                                   selective catalytic reduction of NO with NH 3[J]. Journal of Physical
                 over  Cu/SAPO-34  catalyst[J].  Journal  of  Physical  Chemistry  C,
                                                                   Chemistry C, 2016, 120(3): 1523-1533.
                 2014, 118(13): 6565-6575.
                                                               [20]  Gao R, Zhang D, Maitarad P, et al. Morphology-dependent properties
            [3]   Wang  H,  Cai  K,  Liu  J,  et al.  Synthesis  of  nanosphere  TiO 2  with
                                                                   of  MnO x/ZrO 2-CeO 2  nanostructures  for  the  selective  catalytic
                 flower-like  micro-composition  and  its  application  for  the  selective
                 catalytic  reduction  of  NO  with  NH 3  at  low  temperature[J].  RSC   reduction  of  NO  with  NH 3[J]. Journal of  Physical Chemistry C,
                                                                   2013, 117(20): 10502-10511.
                 Advances, 2016, 6(87): 84294-84308.           [21]  Putluru  S  S  R,  Riisager  A,  Fehrmann  R.  The  effect  of  acidic  and
            [4]   Ren Cuitao (任翠涛), Hu Yingzhi (胡颖智), Wei Haoyu (魏浩宇), et   redox properties  of  V 2O 5/CeO 2-ZrO 2  catalysts  in  selective  catalytic
                 al. NH 3 selective catalytic reduction of NO over M/REY catalysts in   reduction  of  NO  by  NH 3[J].  Catalysis  Letters,  2009,  133(3/4):
                 presence of SO 2[J]. Journal of Fuel Chemistry and Technology (燃料
                                                                   370-375.
                 化学学报), 2013, 41(10): 1241-1247.
                                                               [22]  Foo R, Vazhnova T, Lukyanov D B, et al. Formation of reactive lewis
            [5]   Liu Z M, Li Y, Zhu T, et al. Selective catalytic reduction of NO x by
                                                                   acid  sites  on  Fe/WO 3-ZrO 2  catalysts  for  higher  temperature  SCR
                 NH 3  over  Mn-promoted  V 2O 5/TiO 2  catalyst[J].  Industrial  &
                                                                   applications[J].  Applied  Catalysis  B:  Environmental,  2015,  162:
                 Engineering Chemistry Research, 2014, 53(33): 12964-12970.
                                                                   174-179.
            [6]   Lee  I Y, Kim D W,  Lee  J  B,  et al. A  practical  scale  evaluation of   [23]  Zhang Xiangjun (张相俊), Liu Xiaogang (刘晓刚), Li Qingyong (李
                 sulfated  V 2O 5/TiO 2  catalyst  from  metatitanic  acid  for  selective   清雍),  et al.  Effect  of  carrier  on  the  performance  of  copper  based
                 catalytic reduction of NO by NH 3[J]. Chemical Engineering Journal,   catalyst  for  selective  catalytic  reduction  of  NO  with  NH 3  at  low
                 2002, 90(3): 267-272.                             temperature[J]. Journal of Fuel Chemistry and Technology (燃料化
            [7]   Xu L, Wang C, Chang H, et al. New insight into SO 2 poisoning and   学学报), 2017, 45(2): 220-226.
                 regeneration  of  CeO 2-WO 3/TiO 2 and V 2O 5-WO 3/TiO 2  catalysts  for   [24]  Ndong L B B, Ibondou M P, Gu X, et al. Enhanced photocatalytic
                 low-temperature NH 3-SCR[J]. Environmental Science & Technology,   activity of TiO 2 nanosheets by doping with Cu for chlorinated solvent
                 2018, 52(12): 7064-7071.                          pollutants  degradation[J].  Industrial  &  Engineering  Chemistry
            [8]   Wang C, Yang S, Chang H, et al. Dispersion of tungsten oxide on   Research, 2014, 53(4): 1368-1376.
                 SCR  performance  of  V 2O 5-WO 3/TiO 2:  Acidity,  surface  species  and   [25]  Zou  H,  Chen  S,  Lin  W.  Effect  of  pretreatment  methods  on  the
                 catalytic  activity[J].  Chemical  Engineering  Journal,  2013,  225:   performance  of  Cu-Zr-Ce-O  catalyst  for  CO  selective  oxidation[J].
                 520-527.                                          Journal of Natural Gas Chemistry, 2008, 17(2): 208-211.
            [9]   He Y Y, Ford M E, Zhu M H, et al. Influence of catalyst synthesis   [26]  Chary  K  V  R,  Sagar  G  V,  Naresh  D,  et al.  Characterization  and
                 method on selective catalytic reduction (SCR) of NO by NH 3 with   reactivity  of  copper  oxide  catalysts  supported  on  TiO 2-ZrO 2[J].
                 V 2O 5-WO 3/TiO 2  catalysts[J].  Applied  Catalysis  B:  Environmental,   Journal of Physical Chemistry B, 2005, 109(19): 9437-9444.
                 2016, 193: 141-150.                           [27]  Landi G, Lisi L, Pirone R, et al. NO decomposition over La-doped
            [10]  Busca G, Larrubia M A, Arrighi L, et al. Catalytic abatement of NO x:   Cu-ZSM5 monolith under adsorption-reaction conditions[J]. Applied
                 Chemical  and  mechanistic  aspects[J].  Catalysis  Today,  2005,   Catalysis A: General, 2013, 464/465(16): 61-67.
                 107/108: 139-148.                             [28]  Ma L, Cheng Y,  Cavataio G, et al. Characterization of commercial
            [11]  Li Y, Deng J, Song W, et al. Nature of Cu species in Cu-SAPO-18   Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment
                 catalyst  for  NH 3-SCR:  Combination  of  experiments  and  DFT   for  NH 3-SCR  of  NO x  in  diesel  exhaust[J].  Chemical  Engineering
                 calculations[J].  Journal  of  Physical  Chemistry  C,  2016,  120(27):   Journal, 2013, 225(3): 323-330.
                 14669-14680.                                  [29]  Zhang G, Li Z, Zheng H, et al. Influence of the surface oxygenated
            [12]  Gao F, Wang Y, Washton N M, et al. Effects of alkali and alkaline   groups of activated carbon on preparation of a nano Cu/AC catalyst
                 earth cocations on the activity and hydrothermal stability of Cu/SSZ-   and  heterogeneous  catalysis  in  the  oxidative  carbonylation  of
                 13 NH 3-SCR catalysts[J]. ACS Catalysis, 2015, 5(11): 6780-6791.     methanol[J]. Applied Catalysis B: Environmental, 2015, 179: 95-105.
            [13]  Sreekanth P M,  Pena D A,  Smirniotis P G.  Titania  supported   [30]  Richter M, Fait M J G, Eckelt R, et al. Gas-phase carbonylation of
                 bimetallic  transition  metal  oxides  for  low-temperature  SCR  of  NO   methanol  to  dimethyl  carbonate  on  chloride-free  Cu-precipitated
                 with  NH 3[J].  Industrial  &  Engineering  Chemistry  Research,  2006,   zeolite Y at normal pressure[J]. Journal of Catalysis, 2007, 245(1):
                 45(19): 6444-6449.                                11-24.
   116   117   118   119   120   121   122   123   124   125   126