Page 116 - 精细化工2019年第9期
P. 116
·1844· 精细化工 FINE CHEMICALS 第 36 卷
豆油多元醇的分解温度为 334 ℃,脂肪酸链的断裂 (3)利用小分子醇作为开环剂,该方法合成的
是质量损失的主要组成部分,总质量损失率达 93% 大豆油多元醇生产成本相对较低,有望替代部分石
左右。大豆油多元醇的分解温度比环氧大豆油高, 化产品成为环保型新材料的原料。
说明大豆油多元醇的热稳定性明显优于环氧大豆油。
参考文献:
[1] Huang Yuanbo (黄元波), Wang Jiaqiang (王家强), Gu Jiyou (顾继
友), et al. Research progress on epoxidation of vegetable oil[J].
Forest Chemicals and Industry(林产化学与工业), 2013, 33(5):
115-120.
[2] Firouzabadi H, Jafarpour M. Some applications of zirconium (Ⅳ)
tetrachloride (ZrCl 4) and zirconium (Ⅳ) oxydichloride octahydrate
(ZrOCl 2. 8H 2O) as catalysts or reagents in organic synthesis[J].
Journal of the Iranian Chemical Society, 2008, 5(2): 159-183.
[3] Ager D J, Prakash I, Schaad D R. 1, 2-Amino alcohols and their
heterocyclic derivatives as chiral auxiliaries in asymmetric
synthesis[J]. Chemical Reviews, 1996, 96(2): 835-876.
[4] Corey E J, Zhang F Y. re- and si-face-selective nitroaldol reactions
图 9 环氧大豆油和大豆油多元醇的热重图 catalyzed by a rigid chiral quaternary ammonium salt: A highly
Fig. 9 TG curves of epoxidized soybean oil and polyols stereoselective synthesis of the HIV protease inhibitor amprenavir
(Vertex 478)[J]. Angewandte Chemie International Edition, 1999,
2.9 环氧大豆油和大豆油多元醇的流变性能测定 38(13/14): 1931-1934.
[5] O'Brien P. Sharpless asymmetric aminohydroxylation: Scope,
图 10 是环氧大豆油和大豆油多元醇的流变曲
limitations, and use in synthesis[J]. Angewandte Chemie International
线。从图中可以看出,随着温度的升高,环氧大豆 Edition, 1999, 38(3): 326-329.
油和大豆油多元醇的黏度呈线性变化,其黏度随着 [6] Li G, Chang H T, Sharpless K B. Catalytic asymmetric
温度的升高逐渐下降。在温度较低时,大豆油多元 aminohydroxylation (AA) of olefins[J]. Angewandte Chemie
International Edition in English, 1996, 35(4): 451-454.
醇的黏度明显低于环氧大豆油的黏度,说明合成的
[7] Wang Jitao (王积涛). Organic chemistry (有机化学)[M]. 2ed.
大豆油多元醇的低温流动性优于环氧大豆油。 Tianjin:Nankai University Press (南开大学出版社), 1995: 324-329.
[8] Liu Yuheng (刘玉衡), Zhang Zhanhui (张占辉). Study on ring
opening reaction of epoxy compounds[D]. Shijiazhuang: Hebei
Normal University (河北师范大学), 2009.
[9] Zeng Jun (曾俊), Liao Shisheng (廖石胜), Ren Xiaona (任小娜).
The research of lubricant synthesis base oil prepared by vegetable
oil[J]. Food Industry (食品工业), 2015, 36(5): 213-216.
[10] Miao S, Zhang S, Su Z, et al. Synthesis of bio-based polyurethanes
from epoxidized soybean oil and isopropanolamine[J]. Journal of
Applied Polymer Science, 2013, 127(3): 1929-1936.
[11] Wang C S, Yang L T, Ni B L, et al. Polyurethane networks from
different soy-based polyols by the ring opening of epoxidized
soybean oil with methanol, glycol, and 1, 2-propanediol[J]. Journal
of Applied Polymer Science, 2009, 114(1): 125-131.
图 10 环氧大豆油和大豆油多元醇的流变曲线 [12] Ma Huan (马焕), Huang Yuanbo (黄元波), Yang Xiaoqin (杨晓琴),
Fig. 10 Rheological spectrum of epoxidized soybean oil et al. Optimization of preparation of soybean oil-based polyols by
and polyols HPW-based mesoporous sieve using response surface methodology
[J]. Chinese Fat (中国油脂), 2017, 42(4): 64-68.
[13] Cheng Qulin (成取林), Wang Mingming (王明明). Synthesis of
3 结论 Environment bio-lubricants by ESO using modified montmorillonite
catalysts[J]. Guangdong Chemical Industry (广东化工),2016,43(2):
(1)通过红外谱图和核磁共振氢谱表征可知, 45-47.
[14] Chen R, Zhang C, Kessler M R. Polyols and polyurethanes prepared
环氧化合物和醇发生了反应且得到了目标产物。
from epoxidized soybean oil ring-opened by polyhydroxy fatty acids
(2)当催化剂用量为总反应物质量的 3%,助 with varying OH numbers[J]. Journal of Applied Polymer Science,
催化剂用量为总反应物质量的 4%,反应时间为 8 h, 2015, 132(1): 41213.
反应温度为 70 ℃,醇油物质的量比为 28∶1 时, [15] Bortoluzzi M, Evangelisti C, Marchetti F, et al. Synthesis of a highly
reactive form of WO 2Cl 2, its conversion into nanocrystalline mono-
环氧化合物的开环反应效果最好,开环转化率为
hydrated WO 3 and coordination compounds with tetramethylurea[J].
89.13%。 Dalton Transactions, 2016, 45(39): 15342-15349.