Page 27 - 精细化工2019年第9期
P. 27

第 9 期                      张记刚,等:  表面活性剂自组装的分子动力学模拟进展                                   ·1755·


                 and Engineering Aspects, 2016, 494: 74-80.     [31]  Sun  Xiaofeng(孙晓峰),  Li  Hongguang(李洪光).  Carbon  quantum
            [12]  Ziserman L, Abezgauz L, Ramon O, et al. Origins of the viscosity   dot-doped worm-like micelles[J]. Daily Chemical Industry(日用化学
                 peak in wormlike micellar solutions. 1. Mixed catanionic surfactants.   工业), 2018, 48(9): 483-488.
                 A cryo-transmission electron microscopy study[J]. Langmuir, 2009,   [32]  Sangwai  A  V,  Sureshkumar  R.  Coarse-grained  molecular  dynamics
                 25(18): 10483-10489.                              simulations of the sphere to rod transition in surfactant micelles[J].
            [13]  Croce  V,  Cosgrove  T,  Maitland  G,  et al.  Rheology,  cryogenic   Langmuir, 2011, 27(11): 6628-6638.
                 transmission  electron  spectroscopy,  and  small-angle  neutron   [33]  Sangwai A V, Sureshkumar R. Binary interactions and salt-induced
                 scattering  of  highly  viscoelastic  wormlike  micellar  solutions[J].   coalescence of spherical micelles of cationic surfactants from molecular
                 Langmuir, 2003, 19(20): 8536-8541.                dynamics simulations[J]. Langmuir, 2012, 28(2): 1127-1135.
            [14]  Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular   [34]  Dhakal S, Sureshkumar R. Topology, length scales, and energetics of
                 dynamics with coupling to an external bath[J]. Journal of Chemical   surfactant  micelles[J].  Journal  of  Chemical  Physics,  2015,  143(2):
                 Physics, 1984, 81(8): 3684-3690.                  024905.
            [15]  Sun H. Compass: an ab initio force-field optimized for condensed-   [35]  Velinova M, Sengupta D, Tadjer A V, et al. Sphere-to-rod transitions
                 phase  applications-overview  with  details  on  alkane  and  benzene   of  nonionic  surfactant  micelles  in  aqueous  solution  modeled  by
                 compounds[J].  Journal  of  Physical  Chemistry  B,  1998,  102(38):   molecular dynamics simulations[J]. Langmuir, 2011, 27(23): 14071-
                 7338-7364.                                        14077.
            [16]  Marrink S J, Risselada H J, Yefimov S, et al. The martini force field:   [36]  Touve M A, Figg C A, Wright D B, et al. Polymerization-induced
                    coarse  grained  model  for  biomolecular  simulations[J].  Journal of   self-assembly  of  micelles  observed  by  liquid  cell  transmission
                 Physical Chemistry B, 2007, 111(27): 7812-7824.     electron microscopy[J]. ACS Central Science, 2018, 4(5): 543-547.
            [17]  Aoyagi T, Sawa F, Shoji T, et al. A general-purpose coarse-grained   [37]  Dhakal S, Sureshkumar R. Anomalous diffusion and stress relaxation
                 molecular dynamics program[J]. Computer Physics Communications,   in surfactant micelles[J]. Physical Review E, 2017, 96(1): 012605.
                 2002, 145(2): 267-279.                        [38]  Marrink S J, Mark A E. Molecular dynamics simulation of the formation,
            [18]  Groot R D, Warren P B. Dissipative particle dynamics: Bridging the   structure, and dynamics of small phospholipid vesicles[J]. Journal of
                 gap  between  atomistic  and  mesoscopic  simulation[J].  Journal  of   the American Chemical Society, 2003, 125(49): 15233-15242.
                 Chemical Physics, 1997, 107(11): 4423-4435.     [39]  Arai N, Yoshimoto Y, Yasuoka K, et al. Self-assembly behaviours of
            [19]  Smit  B,  Esselink  K,  Hilbers  Pa  J,  et al.  Computer  simulations  of   primitive  and  modern  lipid  membrane  solutions:  a  coarse-grained
                 surfactant self-assembly[J]. Langmuir, 1993, 9(1): 9-11.     molecular simulation study[J]. Physical Chemistry Chemical Physics,
            [20]  Danov K D, Kralchevsky P A, Ananthapadmanabhan K P. Micelle–   2016, 18(28): 19426-19432.
                 monomer  equilibria  in  solutions  of  ionic  surfactants  and  in  ionic–   [40]  Chng C P. Effect of simulation temperature on phospholipid bilayer-
                 nonionic mixtures: A generalized phase separation model[J]. Advances   vesicle  transition  studied  by  coarse-grained  molecular  dynamics
                 in Colloid and Interface Science, 2014, 206(2): 17-45.     simulations[J]. Soft Matter, 2013, 9(30): 7294-7301.
            [21]  Tang X, Koenig P H, Larson R G. Molecular dynamics simulations of   [41]  Janke  J  J,  Bennett  W  F,  Tieleman  D  P.  Oleic  acid  phase  behavior
                 sodium dodecyl sulfate micelles in water-the effect of the force field   from  molecular  dynamics  simulations[J].  Langmuir,  2014,  30(35):
                 [J]. Journal of Physical Chemistry B, 2014, 118(14): 3864-3880.    10661-10667.
            [22]  Long  J  A,  Rankin  B  M,  Ben-Amotz  D.  Micelle  structure  and   [42]  Wang P, Ma Y, Liu Z, et al. Vesicle formation of catanionic mixtures
                 hydrophobic hydration[J]. Journal of the American Chemical Society,   of CTAC/SDS induced by ratio: a coarse-grained molecular dynamic
                 2015, 137(33): 10809-10815.                       simulation study[J]. RSC Advances, 2016, 6(16): 13442-13449.
            [23]  Ritter  E,  Yordanova  D,  Gerlach  T,  et al.  Molecular  dynamics   [43]  Wang P, Pei S, Wang M, et al. Coarse-grained molecular dynamics
                 simulations  of  various  micelles  to  predict  micelle  water  partition   study on the self-assembly of Gemini surfactants: the effect of spacer
                 equilibria with cosmomic: influence of micelle size and structure[J].   length[J]. Physical Chemistry Chemical Physics, 2017, 19(6): 4462-
                 Fluid Phase Equilibria, 2016, 422(25): 43-55.     4468.
            [24]  Sammalkorpi M, Karttunen M, Haataja M. Ionic surfactant aggregates   [44]  Kalluri  R.  The  biology  and  function  of  exosomes  in  cancer[J].
                 in saline solutions: sodium dodecyl sulfate (SDS) in the presence of   Journal of Clinical Investigation, 2016, 126(4): 1208-1215.
                 excess  sodium  chloride  (NaCl)  or  calcium  chloride  (CaCl 2)[J].   [45]  Sezgin  E,  Levental  I,  Mayor  S,  et al.  The  mystery  of  membrane
                 Journal of Physical Chemistry B, 2009, 113(17): 5863-5870.     organization:  composition,  regulation  and  roles  of  lipid  rafts[J].
            [25]  Kuo M Y, Yang H C, Hua C Y, et al. Computer simulation of ionic   Nature Reviews Molecular Cell Biology, 2017, 18(6): 361-374.
                 and  nonionic  mixed  surfactants  in  aqueous  solution[J].  Chem  Phys   [46]  Mazur F, Bally M, Städler B, et al. Liposomes and lipid bilayers in
                 Chem, 2004, 5(4): 575-580.                        biosensors[J].  Advances  in  Colloid  and  Interface  Science,  2017,
            [26]  Wang S, Larson R G. Coarse-grained molecular dynamics simulation   249(5): 88-99.
                 of self-assembly and surface adsorption of ionic surfactants using an   [47]  Singh  P. SPR biosensors: Historical perspectives and current
                 implicit water model[J]. Langmuir, 2015, 31(4): 1262-1271.     challenges[J].  Sensors  and  Actuators  B:  Chemical,  2016,  229:
            [27]  Levine B G, Lebard D N, Devane R, et al. Micellization studied by   110-130.
                 GPU-accelerated  coarse-grained  molecular  dynamics[J].  Journal  of   [48]  Osaki T, Takeuchi S. Artificial cell membrane systems for biosensing
                 Chemical Theory and Computation, 2011, 7(12): 4135-4145.     applications[J]. Analytical Chemistry, 2016, 89(1): 216-231.
            [28]  Karaborni  S,  Esselink  K,  Hilberts  P  A  J,  et al.  Simulating  the   [49]  Shinoda  W,  Devane  R,  Klein  M  L.  Multi-property  fitting  and
                 self-assembly  of  Gemini  (dimeric)  surfactants[J].  Science,  1994,   parameterization of a coarse grained model for aqueous surfactants
                 266(14): 254-256.                                 [J]. Molecular Simulation, 2007, 33(1/2): 27-36.
            [29]  Arai  N,  Yasuoka  K,  Masubuchi  Y.  Spontaneous  self-assembly   [50]  Shelley J C, Shelley M Y, Reeder R C, et al. A coarse grain model for
                 process  for  threadlike  micelles[J].  Journal  of  Chemical  Physics,   phospholipid simulations[J]. Journal of Physical Chemistry B, 2001,
                 2007, 126(24): 244905.                            105(19): 4464-4470.
            [30]  Wang  P,  Pei  S,  Wang  M,  et al.  Study  on  the  transformation  from   [51]  Shelley  J  C, Shelley M  Y,  Reeder R C,  et al.  Simulations  of
                 linear  to  branched  wormlike  micelles:  An  insight  from  molecular   phospholipids  using  a  coarse  grain  model[J].  Journal  of  Physical
                 dynamics  simulation[J].  Journal  of  Colloid  and  Interface  Science,   Chemistry B, 2001, 105(40): 9785-9792.
                 2017, 494(15): 47-53.                         [52]  Marrink S  J,  De Vries A H,  Mark A E.  Coarse grained  model  for
   22   23   24   25   26   27   28   29   30   31   32