Page 111 - 《精细化工》2020年第12期
P. 111

第 12 期               陈保卫,等:  棒状 FeS 2 /NiS 2 和 FeP/Ni 2 P 材料的合成与催化性能比较                  ·2473·


            来看,在氧化电势下金属磷化物比金属硫化物热力                                 2015, 8(1): 23-39.
                                                               [7]   LEE Y M, SUNTIVICH J, MAY K J, et al. Synthesis and activities
            学稳定性差,金属硫化物比金属氧化物热力学稳定
                                                                   of rutile IrO 2 and RuO 2 nanoparticles for oxygen evolution in acid
            性差  [33] 。因此,在析氧反应中,有些金属硫化物和                           and alkaline solutions[J]. The Journal of Physical Chemistry Letters,
            金属磷化物由于部分转换为金属氧化物或金属氢氧                                 2012, 3(3): 399-404.
                                                               [8]   AUDICHON T, NAPPORN T W, CANAFF C, et al. IrO 2 coated
            化物,其催化性能和稳定都有很大提高                   [34] 。基于以          on RuO 2 as efficient and  stable electroactive nanocatalysts for
            上讨论,可以推测析氧反应过程中,FeP/Ni 2 P 材料                          electrochemical water splitting[J]. The Journal of Physical Chemistry
            的表面可能更容易形成对应的金属氧化物或氢氧化                                 C, 2016, 120(5): 2562-2573.
                                                               [9]   SUN H M, XU X B, YAN Z H, et al. Porous multishelled Ni 2P hollow
            物,从而提高了其催化活性。                                          microspheres as an active electrocatalyst for hydrogen and  oxygen
                                                                   evolution[J]. Chemistry of Materials, 2017, 29(19): 8539-8547.
            3   结论                                             [10]  LIANG Y H, LIU Q, ASIRI A M, et al. Self-supported FeP nanorod
                                                                   arrays: A cost-effective 3D hydrogen evolution cathode with high
                                                                   catalytic activity[J]. ACS Catalysis, 2014, 4(11): 4065-4069.
                 采用一种简易溶剂挥发自组装和焙烧处理的方
                                                               [11]  DONG B D, ZHAO X, HAN G Q,  et al.  Two-step synthesis of
            法合成了铁/镍前驱物,并进一步通过硫化和磷化处                                binary Ni-Fe sulfides supported on nickel foam as highly efficient
            理得到对应的硫化物 FeS 2 /NiS 2 和磷化物 FeP/Ni 2 P                 electrocatalysts for the oxygen evolution reaction[J].  Journal of
                                                                   Materials Chemistry A, 2016, 4(35): 13499-13508.
            材料,将上述两种材料用作电解水析氧反应催化剂,                            [12]  STERN L A, FENG L G, SONG F, et al. Ni 2P as a Janus catalyst for
            通过对实验结果分析,可以得出以下结论:                                    water splitting: The oxygen evolution activity of Ni 2P nanoparticles
                                                                   [J]. Energy & Environmental Science, 2015, 8(8): 2347-2351.
                (1)通过分析对比双金属硫化物和磷化物与单
                                                               [13]  YAN Y, ZHAO B, YI S C, et al. Assembling pore-rich FeP nanorods
            金属硫化物和磷化物的催化性能可以看出,由于金                                 on the CNT backbone as an advanced electrocatalyst for oxygen
                                                                   evolution[J]. Journal of Materials Chemistry A, 2016, 4(33): 13005-
            属之间的协同作用,FeS 2 /NiS 2 和 FeP/Ni 2 P 比对应单
                                                                   13010.
            金属硫化物和磷化物催化性能更好。                                   [14]  GUO Y N, PARK T, YI J W, et al. Nanoarchitectonics for transition-
                                                                   metal-sulfide-based electrocatalysts for water splitting[J]. Advanced
                (2)通过分析对比 FeS 2 /NiS 2 和 FeP/Ni 2 P、FeS 2
                                                                   Materials, 2019, 31(17): 1807134.
            和 FeP、NiS 2 和 Ni 2 P 的催化性能可以看出,同种金                 [15]  ZENG  L Y, SUN K  A,  WANG X  B,  et al. Three-dimensional-
            属的磷化物比硫化物在析氧反应中具有更好的催化                                 networked Ni 2P/Ni 3S 2 heteronanoflake  arrays  for highly enhanced
                                                                   electrochemical overall-water-splitting activity[J]. Nano Energy, 2018,
            活性和更快的催化动力学性能。
                                                                   51: 26-36.
                 综上所述,将同种金属硫化物与磷化物催化性                          [16]  FENG Y F, XU C Y, HU E L,  et al. Construction of hierarchical
            能进行比较,为设计高效的过渡金属催化剂材料提                                 FeP/Ni 2P hollow nanospindles for efficient oxygen evolution[J].
                                                                   Journal of Materials Chemistry A, 2018, 6(29): 14103-14111.
            供了参考依据。此外,这种制备双金属硫化物和磷                             [17]  WANG J M, MA X, QU F L, et al. Fe-doped Ni 2P nanosheet array
            化物材料作为活性析氧催化剂的简便方法,也为设                                 for high-efficiency electrochemical  water oxidation[J]. Inorganic
                                                                   Chemistry, 2017, 56(3): 1041-1044.
            计低成本、稳定和高效的多金属电解水催化剂拓宽                             [18]  LIU C Y, MA H, YUAN M W, et al. (NiFe)S 2 nanoparticles grown
            了范围。                                                   on graphene as an efficient electrocatalyst for oxygen  evolution
                                                                   reaction[J]. Electrochimica Acta, 2018, 286: 195-204.
            参考文献:                                              [19]  KAR S, CHAUDHURI S. Solvothermal synthesis of nanocrystalline
                                                                   FeS 2 with different morphologies[J]. Chemical Physics Letters, 2004,
            [1]   ZOU X X, ZHANG Y. Noble metal-free hydrogen evolution catalysts   398(1): 22-26.
                 for water splitting[J]. Chemical Society Reviews, 2015, 44(15):   [20]  ZHANG X J, WANG S W, WANG G S,  et al. Facile synthesis of
                 5148-5180.                                        NiS 2@MoS 2 core-shell nanospheres for effective enhancement in
            [2]   YOU B, JIANG N, SHENG M L, et al. Hierarchically porous urchin-   microwave absorption[J]. RSC Advances, 2017, 7(36): 22454-22460.
                 Like Ni 2P superstructures supported  on nickel foam  as efficient   [21]  GAO W J (高文君), WANG M J (王梦娇), XU D (徐冬),  et al.
                 bifunctional electrocatalysts for  overall water splitting[J]. ACS   Preparation of iron phosphide and study on its electrocatalytic
                 Catalysis, 2016, 6(2): 714-721.                   properties for hydrogen and oxygen evolutions[J]. Modern Chemical
            [3]   PAN Y, SUN K A, LIU S J, et al. Core-shell ZIF-8@ZIF-67-derived   Industry (现代化工), 2019, 39(11): 117-120, 126.
                 CoP nanoparticle-embedded  N-doped carbon nanotube hollow   [22]  MASUD J, UMAPATHI S, ASHOKAAN N,  et al. Iron  phosphide
                 polyhedron for efficient overall water splitting[J]. Journal of the   nanoparticles as an efficient electrocatalyst for the OER in alkaline
                 American Chemical Society, 2018, 140(7): 2610-2618.   solution[J]. Journal of Materials Chemistry A, 2016, 4 (25): 9750-9754.
            [4]   LIU K W, ZHANG C L, SUN Y D, et al. High-performance transition   [23]  TANG  C, XIE L  S, WANG K Y,  et al. A Ni 2P nanosheet array
                 metal phosphide alloy catalyst for oxygen evolution reaction[J]. ACS   integrated on 3D Ni foam: An efficient, robust and reusable monolithic
                 Nano, 2018, 12(1): 158-167.                       catalyst for the hydrolytic dehydrogenation of ammonia borane toward
            [5]   TAN Z, SHARMA L, KAKKAR R, et al. Arousing the reactive   on-demand hydrogen generation[J]. Journal of Materials Chemistry
                 Fe sites in pyrite (FeS 2)  via integration of electronic structure   A, 2016, 4(32): 12407-12410.
                 reconfiguration and in situ electrochemical topotactic transformation   [24]  LUO P, ZHANG  H J,  LIU  L,  et al.  Targeted synthesis of unique
                 for highly efficient oxygen evolution reaction[J]. Inorganic Chemistry,   nickel sulfide (NiS, NiS 2) microarchitectures and the applications for
                 2019, 58(11): 7615-7627.                          the enhanced water splitting system[J]. ACS  Applied Materials &
            [6]   GONG M, DAI H J. A mini review of NiFe-based materials as highly   Interfaces, 2017, 9(3): 2500-2508.
                 active oxygen evolution reaction electrocatalysts[J]. Nano Research,        (下转第 2489 页)
   106   107   108   109   110   111   112   113   114   115   116