Page 111 - 《精细化工》2020年第12期
P. 111
第 12 期 陈保卫,等: 棒状 FeS 2 /NiS 2 和 FeP/Ni 2 P 材料的合成与催化性能比较 ·2473·
来看,在氧化电势下金属磷化物比金属硫化物热力 2015, 8(1): 23-39.
[7] LEE Y M, SUNTIVICH J, MAY K J, et al. Synthesis and activities
学稳定性差,金属硫化物比金属氧化物热力学稳定
of rutile IrO 2 and RuO 2 nanoparticles for oxygen evolution in acid
性差 [33] 。因此,在析氧反应中,有些金属硫化物和 and alkaline solutions[J]. The Journal of Physical Chemistry Letters,
金属磷化物由于部分转换为金属氧化物或金属氢氧 2012, 3(3): 399-404.
[8] AUDICHON T, NAPPORN T W, CANAFF C, et al. IrO 2 coated
化物,其催化性能和稳定都有很大提高 [34] 。基于以 on RuO 2 as efficient and stable electroactive nanocatalysts for
上讨论,可以推测析氧反应过程中,FeP/Ni 2 P 材料 electrochemical water splitting[J]. The Journal of Physical Chemistry
的表面可能更容易形成对应的金属氧化物或氢氧化 C, 2016, 120(5): 2562-2573.
[9] SUN H M, XU X B, YAN Z H, et al. Porous multishelled Ni 2P hollow
物,从而提高了其催化活性。 microspheres as an active electrocatalyst for hydrogen and oxygen
evolution[J]. Chemistry of Materials, 2017, 29(19): 8539-8547.
3 结论 [10] LIANG Y H, LIU Q, ASIRI A M, et al. Self-supported FeP nanorod
arrays: A cost-effective 3D hydrogen evolution cathode with high
catalytic activity[J]. ACS Catalysis, 2014, 4(11): 4065-4069.
采用一种简易溶剂挥发自组装和焙烧处理的方
[11] DONG B D, ZHAO X, HAN G Q, et al. Two-step synthesis of
法合成了铁/镍前驱物,并进一步通过硫化和磷化处 binary Ni-Fe sulfides supported on nickel foam as highly efficient
理得到对应的硫化物 FeS 2 /NiS 2 和磷化物 FeP/Ni 2 P electrocatalysts for the oxygen evolution reaction[J]. Journal of
Materials Chemistry A, 2016, 4(35): 13499-13508.
材料,将上述两种材料用作电解水析氧反应催化剂, [12] STERN L A, FENG L G, SONG F, et al. Ni 2P as a Janus catalyst for
通过对实验结果分析,可以得出以下结论: water splitting: The oxygen evolution activity of Ni 2P nanoparticles
[J]. Energy & Environmental Science, 2015, 8(8): 2347-2351.
(1)通过分析对比双金属硫化物和磷化物与单
[13] YAN Y, ZHAO B, YI S C, et al. Assembling pore-rich FeP nanorods
金属硫化物和磷化物的催化性能可以看出,由于金 on the CNT backbone as an advanced electrocatalyst for oxygen
evolution[J]. Journal of Materials Chemistry A, 2016, 4(33): 13005-
属之间的协同作用,FeS 2 /NiS 2 和 FeP/Ni 2 P 比对应单
13010.
金属硫化物和磷化物催化性能更好。 [14] GUO Y N, PARK T, YI J W, et al. Nanoarchitectonics for transition-
metal-sulfide-based electrocatalysts for water splitting[J]. Advanced
(2)通过分析对比 FeS 2 /NiS 2 和 FeP/Ni 2 P、FeS 2
Materials, 2019, 31(17): 1807134.
和 FeP、NiS 2 和 Ni 2 P 的催化性能可以看出,同种金 [15] ZENG L Y, SUN K A, WANG X B, et al. Three-dimensional-
属的磷化物比硫化物在析氧反应中具有更好的催化 networked Ni 2P/Ni 3S 2 heteronanoflake arrays for highly enhanced
electrochemical overall-water-splitting activity[J]. Nano Energy, 2018,
活性和更快的催化动力学性能。
51: 26-36.
综上所述,将同种金属硫化物与磷化物催化性 [16] FENG Y F, XU C Y, HU E L, et al. Construction of hierarchical
能进行比较,为设计高效的过渡金属催化剂材料提 FeP/Ni 2P hollow nanospindles for efficient oxygen evolution[J].
Journal of Materials Chemistry A, 2018, 6(29): 14103-14111.
供了参考依据。此外,这种制备双金属硫化物和磷 [17] WANG J M, MA X, QU F L, et al. Fe-doped Ni 2P nanosheet array
化物材料作为活性析氧催化剂的简便方法,也为设 for high-efficiency electrochemical water oxidation[J]. Inorganic
Chemistry, 2017, 56(3): 1041-1044.
计低成本、稳定和高效的多金属电解水催化剂拓宽 [18] LIU C Y, MA H, YUAN M W, et al. (NiFe)S 2 nanoparticles grown
了范围。 on graphene as an efficient electrocatalyst for oxygen evolution
reaction[J]. Electrochimica Acta, 2018, 286: 195-204.
参考文献: [19] KAR S, CHAUDHURI S. Solvothermal synthesis of nanocrystalline
FeS 2 with different morphologies[J]. Chemical Physics Letters, 2004,
[1] ZOU X X, ZHANG Y. Noble metal-free hydrogen evolution catalysts 398(1): 22-26.
for water splitting[J]. Chemical Society Reviews, 2015, 44(15): [20] ZHANG X J, WANG S W, WANG G S, et al. Facile synthesis of
5148-5180. NiS 2@MoS 2 core-shell nanospheres for effective enhancement in
[2] YOU B, JIANG N, SHENG M L, et al. Hierarchically porous urchin- microwave absorption[J]. RSC Advances, 2017, 7(36): 22454-22460.
Like Ni 2P superstructures supported on nickel foam as efficient [21] GAO W J (高文君), WANG M J (王梦娇), XU D (徐冬), et al.
bifunctional electrocatalysts for overall water splitting[J]. ACS Preparation of iron phosphide and study on its electrocatalytic
Catalysis, 2016, 6(2): 714-721. properties for hydrogen and oxygen evolutions[J]. Modern Chemical
[3] PAN Y, SUN K A, LIU S J, et al. Core-shell ZIF-8@ZIF-67-derived Industry (现代化工), 2019, 39(11): 117-120, 126.
CoP nanoparticle-embedded N-doped carbon nanotube hollow [22] MASUD J, UMAPATHI S, ASHOKAAN N, et al. Iron phosphide
polyhedron for efficient overall water splitting[J]. Journal of the nanoparticles as an efficient electrocatalyst for the OER in alkaline
American Chemical Society, 2018, 140(7): 2610-2618. solution[J]. Journal of Materials Chemistry A, 2016, 4 (25): 9750-9754.
[4] LIU K W, ZHANG C L, SUN Y D, et al. High-performance transition [23] TANG C, XIE L S, WANG K Y, et al. A Ni 2P nanosheet array
metal phosphide alloy catalyst for oxygen evolution reaction[J]. ACS integrated on 3D Ni foam: An efficient, robust and reusable monolithic
Nano, 2018, 12(1): 158-167. catalyst for the hydrolytic dehydrogenation of ammonia borane toward
[5] TAN Z, SHARMA L, KAKKAR R, et al. Arousing the reactive on-demand hydrogen generation[J]. Journal of Materials Chemistry
Fe sites in pyrite (FeS 2) via integration of electronic structure A, 2016, 4(32): 12407-12410.
reconfiguration and in situ electrochemical topotactic transformation [24] LUO P, ZHANG H J, LIU L, et al. Targeted synthesis of unique
for highly efficient oxygen evolution reaction[J]. Inorganic Chemistry, nickel sulfide (NiS, NiS 2) microarchitectures and the applications for
2019, 58(11): 7615-7627. the enhanced water splitting system[J]. ACS Applied Materials &
[6] GONG M, DAI H J. A mini review of NiFe-based materials as highly Interfaces, 2017, 9(3): 2500-2508.
active oxygen evolution reaction electrocatalysts[J]. Nano Research, (下转第 2489 页)