Page 230 - 《精细化工》2020年第12期
P. 230
·2592· 精细化工 FINE CHEMICALS 第 37 卷
and self-healing hydrogels with reversible and dynamic boronic ester polymer bearing a novel phenylborate derivative as a glucose-sensing
and disulfide linkages[J]. Biomacromolecules, 2017, 18(4): 1356- moiety operating at physiological pH conditions[J]. Biomacromolecules,
1364. 2003, 4(5): 1410-1416.
[15] DENG C C, BROOKS W L, ABBOUD K A, et al. Boronic [19] TIERNEY S, FLACH B M, HJELME D R, et al. Determination of
acid-based hydrogels undergo self-healing at neutral and acidic glucose levels using a functionalized hydrogel-optical fiber
pH[J]. ACS Macro Letters, 2015, 4(2): 220-224. biosensor: Toward continuous monitoring of blood glucose in vivo[J].
[16] WISKUR S L, LAVIGNE J J, AIT-HADDOU H, et al. pK a Values Analytical Chemistry, 2009, 81(9): 3630-3636.
and geometries of secondary and tertiary amines complexed to [20] TIERNEY S, VOLDEN S, STOKKE B T. Glucose sensors based on
boronic acids-implications for sensor design[J]. Organic Letters, a responsive gel incorporated as a fabry-perot cavity on a fiber-optic
2001, 3(9): 1311-1314. readout platform[J]. Biosensors & Bioelectronics, 2009, 24(7):
[17] MATSUMOTO A, YOSHIDA R, KATAOKA K. Glucose-responsive 2034-2039.
polymer gel bearing phenylborate derivative as a glucose-sensing [21] China National Offshore Oil Corporation. Performance index and
moiety operating at the physiological pH[J]. Biomacromolecules, evaluation methods of polymers for chemical flooding in offshore
2004, 5(3): 1038-1045. oilfields: Q/HS 2032—2018[S]. Beijing: Petroleum Industry Press
[18] MATSUMOTO A, IKEDA S, HARADA A, et al. Glucose-responsive (石油工业出版社), 2018: 1-12.
(上接第 2584 页) tetracycline and doxycycline by one-step synthesized iron loaded
sludge biochar[J]. Chemosphere, 2019, 236: 124254.
[20] KANG S, KIM G, CHOE J K, et al. Effect of using powdered [28] KANJANARONG J, GIRI B S, JAISI D P, et al. Removal of
biochar and surfactant on desorption and biodegradability of hydrogen sulfide generated during anaerobic treatment of sulfate-laden
phenanthrene sorbed to biochar[J]. Journal of Hazardous Materials, wastewater using biochar: Evaluation of efficiency and mechanisms[J].
2019, 371: 253-260. Bioresource Technology, 2017, 234: 115-121.
[21] RIO S, BRASQUET F, LECOQ L, et al. Production and [29] HUANG S Z (黄盛泽). Mechanism of removing divalent mercury
characterization of adsorbent materials from an industrial waste[J]. ions from water by sulfur modified biochar[D]. Guangzhou: South
Adsorption, 2005, 11: 791-798. China University of Technology (华南理工大学), 2019.
[22] DHAOUADI H, HENNI F M. Vat dye sorption onto crude [30] WANG K, SUN Y B, TANG J C, et al. Aqueous Cr(Ⅵ) removal by a
0
dehydrated sewage sludge[J]. Journal of Hazardous Materials, 2009, novel ball milled Fe -biochar composite: Role of biochar electron
164(2/3): 448-458. transfer capacity under high pyrolysis temperature[J]. Chemosphere,
[23] ATTALLAH M F, AHMED I M, HAMED M M. Treatment of 2020, 241: 125044.
industrial wastewater containing Congo Red and Naphthol Green B [31] SHAKYA A, AGARWAL T. Removal of Cr(Ⅵ) from water using
using low-cost adsorbent[J]. Environmental Science Pollution Research, pineapple peel derived biochars: Adsorption potential and re-usability
2013, 20(2): 1106-1116. assessment[J]. Journal of Molecular Liquids, 2019, 293: 111497.
[24] CHEN X C, CHEN G C, CHEN L G, et al. Adsorption of copper and [32] WANG Z X (王智香), REN Y X (任宜霞), WANG F Y (王飞燕), et
zinc by biochars produced from pyrolysis of hardwood and corn al. Pistachio shell activated carbon adsorption of wastewater
straw in aqueous solution[J]. Bioresource Technology, 2011, 102(19): containing Cr(Ⅵ) adsorption heat dynamics research[J]. Journal of
8877-8884. Shandong Chemical Engineering (山东化工), 2019, (10): 213-217.
[25] REGKOUZAS P, DIAMADOPOULOS E. Adsorption of selected [33] ZHUANG L Z, LI Q H, CHEN J S, et al. Carbothermal preparation
organic micro-pollutants on sewage sludge biochar[J]. Chemosphere, of porous carbon-encapsulated iron composite for the removal of
2019, 224: 840-851. trace hexavalent chromium[J]. Chemical Engineering Journal, 2014,
[26] LIMA P, ANGELICA R, NEVES R F. Dissolution kinetics of 253: 24-33.
Amazonian metakaolin in nitric acid[J]. Cerâmica, 2018, 64(369): [34] ZHANG X, LV L, QIN Y Z, et al. Removal of aqueous Cr(Ⅵ) by a
86-90. magnetic biochar derived from Melia azedarach wood[J]. Bioresource
[27] WEI J, LIU Y T, LI J, et al. Adsorption and co-adsorption of Technology, 2018, 256: 1-10.
《农药》杂志(中文核心)
2021 年征订启事
《农药》是由沈阳中化农药化工研发有限公司主办的全国性综合农药技术刊物,1958 年创刊,月刊,中文核心期
刊,中国科技核心期刊,美国《化学文摘》信息源期刊,国内外公开发行。
《农药》杂志遵循“研究推广农药技术,推动农药科技进步,提高农业环保意识,促进农业可持续性发展”的办
刊宗旨,本着普及与提高相结合原则,报道农药科研、生产、加工、分析、应用等方面的成果、技术、信息、动态、
经验以及农药生产过程的三废治理及副产物的综合利用,国内外农药新品种、新剂型和新用法,国内病虫草害发生趋
势,农药药效试验、田间应用、使用技术改进及毒性、作用机制、残留动态等内容。《农药》多年来深受科研、生产及
植保工作者的厚爱,成为农药研究、生产、销售、应用部门的知心朋友。荣获全国石油和化工行业优秀报刊一等奖。
全国各地邮局订阅:
邮发代号 8-60,每册定价 30 元,全年定价 360 元。
编辑部订阅:
请订户汇款之后将杂志订阅单发送到农药杂志邮箱:zhaoyingpeng@sinochem.com 或传真至 024-85869187。订阅
联系人:赵英鹏。