Page 62 - 《精细化工》2020年第12期
P. 62
·2424· 精细化工 FINE CHEMICALS 第 37 卷
[27] ZHAO B (赵彬), WANG X Y (王向宇). Research progress of 2020, DOI: 10. 1016/j. gee. 2019. 12. 005.
modified mesoporous molecular sieve MCM-41 for oxidation [44] SAPTAL V, SHINDE D B, BANERJEE R, et al. State-of-the-art
reaction[J]. Industrial Catalysis (工业催化), 2013, 21(1): 1-5. catechol porphyrin COF catalyst for chemical fixation of carbon
[28] UDAYAKUMAR S, LEE M K, SHIM H L, et al. Imidazolium dioxide via cyclic carbonates and oxazolidinones[J]. Catalysis
derivatives functionalized MCM-41 for catalytic conversion of Science & Technology, 2016, 6(15): 6152-6158.
carbon dioxide to cyclic carbonate[J]. Catalysis Communications, [45] HE H M, ZHU Q Q, ZHANG W W, et al. Metal and Co-catalyst free
2009, 10(5): 659-664. CO 2 conversion with a bifunctional covalent organic framework
[29] APPATURI J N, ADAM F. A facile and efficient synthesis of styrene (COF)[J]. ChemCatChem, 2020,12(20): 5192-5199.
carbonate via cycloaddition of CO 2 to styrene oxide over ordered [46] ZHU X, TIAN C C, VEITH G M, et al. In situ doping strategy for the
mesoporous MCM-41-Imi/Br catalyst[J]. Applied Catalysis B: preparation of conjugated triazine frameworks displaying efficient
Environmental, 2013, 136: 150-159. CO 2 capture performance[J]. Journal of the American Chemical
[30] MUNIANDY L, ADAM F, RAHMAN N R A, et al. Highly selective Society, 2016, 138(36): 11497-11500.
synthesis of cyclic carbonates via solvent free cycloaddition of CO 2 [47] BHANJA P, MODAK A, BHAUMIK A. Porous organic polymers for
and epoxides using ionic liquid grafted on rice husk derived CO 2 storage and conversion reactions[J]. ChemCatChem, 2019,
MCM-41[J]. Inorganic Chemistry Communications, 2019, 104: 1-7. 11(1): 244-257.
[31] SRIVASTAVA R, SRINIVAS D, RATNASAMY P. CO 2 activation [48] OZDEMIR J, MOSLEH I, ABOLHASSANI M, et al. Covalent
and synthesis of cyclic carbonates and alkyl/aryl carbamates over organic frameworks for the capture, fixation, or reduction of CO 2[J].
adenine-modified Ti-SBA-15 solid catalysts[J]. Journal of Catalysis, Frontiers in Energy Research, 2019, 7: 77-108.
2005, 233(1): 1-15. [49] PUTHIARAJ P, KIM H S, YU K, et al. Triphenylamine-based
[32] SRIVASTAVA R, SRINIVAS D, RATNASAMY P. Sites for CO 2 covalent imine framework for CO 2 capture and catalytic conversion
activation over amine-functionalized mesoporous Ti(Al)-SBA-15 into cyclic carbonates[J]. Microporous and Mesoporous Materials,
catalysts[J]. Microporous and Mesoporous Materials, 2006, 90(1/2/3): 2020, 297: 110011-110020.
314-326. [50] ROESER J, KAILASAM K, THOMAS A. Covalent triazine
[33] CROCELLÀ V, TABANELLI T, VITILLO J G, et al. A multi-technique frameworks as heterogeneous catalysts for the synthesis of cyclic and
approach to disclose the reaction mechanism of dimethyl carbonate linear carbonates from carbon dioxide and epoxides[J]. ChemSusChem,
synthesis over amino-modified SBA-15 catalysts[J]. Applied Catalysis 2012, 5(9): 1793-1799.
B: Environmental, 2017, 211: 323-336. [51] LI Y M, YANG L, SUN L, et al. Chemical fixation of carbon dioxide
[34] ZHANG M, CHU B X, LI G Y, et al. Triethanolamine-modified catalyzed via covalent triazine frameworks as metal free heterogeneous
mesoporous SBA-15: Facile one-pot synthesis and its catalytic catalysts without a cocatalyst[J]. Journal of Materials Chemistry A,
application for cycloaddition of CO 2 with epoxides under mild 2019, 7(45): 26071-26076.
conditions[J]. Microporous and Mesoporous Materials, 2019, 274: [52] KUZMICZ D, COUPILLAUD P, MEN Y J, et al. Functional
363-372. mesoporous poly(ionic liquid)-based copolymer monoliths: From
[35] LIU M S, LIU B, LIANG L, et al. Design of bifunctional synthesis to catalysis and microporous carbon production[J]. Polymer,
NH 3I-Zn/SBA-15 single-component heterogeneous catalyst for 2014, 55(16): 3423-3430.
chemical fixation of carbon dioxide to cyclic carbonates[J]. Journal [53] WANG X C, ZHOU Y, GUO Z J, et al. Heterogeneous conversion of
of Molecular Catalysis A: Chemical, 2016, 418: 78-85. CO 2 into cyclic carbonates at ambient pressure catalyzed by
[36] HU Y L, WANG H B, CHEN Z W, et al. Titanium incorporated ionothermal-derived meso-macroporous hierarchical poly(ionic
mesoporous silica immobilized functional ionic liquid as an efficient liquid) s[J]. Chemical Science, 2015, 6(12): 6916-6924.
reusable catalyst for cycloaddition of carbon dioxide to epoxides[J]. [54] EMA T, MIYAZAKI Y, SHIMONISHI J, et al. Bifunctional
Chemistry Select, 2018, 3(18): 5087-5091. porphyrin catalysts for the synthesis of cyclic carbonates from
[37] TAYEBEE R, ABDOLLAHI N, GHADAMGAHI M. A cheap and epoxides and CO 2: Structural optimization and mechanistic study[J].
efficient methodology for the solvent-free, one-pot and multi- Journal of the American Chemical Society, 2014, 136(43): 15270-
component synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones catalyzed 15279.
by mesoporous NH 4H 2PO 4/MCM-48 and comparison of its catalytic [55] XIE Y, WANG T T, YANG R X, et al. Efficient fixation of CO 2 by a
efficacy with NH 4H 2PO 4/MCM-41[J]. Journal of the Chinese zinc-coordinated conjugated microporous polymer[J]. ChemSusChem,
Chemical Society, 2013, 60(8): 1014-1018. 2014, 7(8): 2110-2114.
[38] BANSAL A, SHARMA R, MOHANTY P. Nanocasted polytriazine- [56] XIE Y, WANG T T, LIU X H, et al. Capture and conversion of CO 2
SBA-16 mesoporous composite for the conversion of CO 2 to cyclic at ambient conditions by a conjugated microporous polymer[J].
carbonates[J]. Journal of CO 2 Utilization, 2020, 40: 101189-101195. Nature Communications, 2013, 4(1): 1-7.
[39] AHMED M, SAKTHIVEL A. Preparation of cyclic carbonate via [57] ALKORDI M H, WESELIŃSKI Ł J, D'ELIA V, et al. CO 2 conversion:
cycloaddition of CO 2 on epoxide using amine-functionalized SAPO-34 The potential of porous-organic polymers (POPs) for catalytic CO 2-
as catalyst[J]. Journal of CO 2 Utilization, 2017, 22: 392-399. epoxide insertion[J]. Journal of Materials Chemistry A, 2016, 4(19):
[40] LIANG J, HUANG Y B, CAO R. Metal-organic frameworks and 7453-7460.
porous organic polymers for sustainable fixation of carbon dioxide [58] MAURIN G, SERRE C, COOPER A, et al. The new age of MOFs
into cyclic carbonates[J]. Coordination Chemistry Reviews, 2019, and their porous-related solids[J]. Chemical Society Reviews, 2017,
378: 32-65. 46(11): 3104-3107.
[41] SHINDE D B, KANDAMBETH S, PACHFULE P, et al. Bifunctional [59] MARCINIAK A A, LAMB K J, OZORIO L P, et al. Heterogeneous
covalent organic frameworks with two dimensional organocatalytic catalysts for cyclic carbonate synthesis from carbon dioxide and
micropores[J]. Chemical Communications, 2015, 51(2): 310-313. epoxides[J]. Current Opinion in Green and Sustainable Chemistry,
[42] PÉREZ-PÉREZ J, HERNÁNDEZ-BALDERAS U, MARTÍNEZ- 2020,26: 100365-100416.
[60] CHEN Y L, XU P, ARAI M, et al. Cycloaddition of carbon dioxide to
OTERO D, et al. Bifunctional silanol-based HBD catalysts for CO 2
fixation into cyclic carbonates[J]. New Journal of Chemistry, 2019, epoxides for the synthesis of cyclic carbonates with a mixed catalyst
43(47): 18525-18533. of layered double hydroxide and tetrabutylammonium bromide at
[43] LAN J W, QU Y, XU P, et al. Novel HBD-containing Zn ambient temperature[J]. Advanced Synthesis & Catalysis, 2019,
(dobdc)(datz) as efficiently heterogeneous catalyst for CO 2 chemical 361(2): 335-344.
conversion under mild conditions[J]. Green Energy & Environment, [61] PAL T K, DE D, BHARADWAJ P K. Metal-organic frameworks for