Page 159 - 精细化工2020年第2期
P. 159

第 2 期                  吴启超,等:  两步法合成交联碳/氮双掺杂 Fe 3 O 4 锂离子阳极材料                            ·361·


            [11]  Jing  S  U,  Cao  M,  Ling  R,  et al.  Fe 3O 4-Graphene  nanocomposites   subunits  with  enhanced  lithium  storage  properties[J].  Adv  Energy
                 with improved lithium storage and magnetism properties[J]. Journal   Mater, 2017, 8(7): DOI:10.1002/aenm.201702347.
                 of Physical Chemistry C, 2011, 115(30): 14469-14477.     [27]  Liao  C,  Wu  S.  Pseudocapacitance  behavior  on  Fe 3O 4-pillared  SiO x
            [12]  Luo  J,  Liu  J,  Zeng  Z,  et al.  Three-dimensional  graphene  foam   microsphere  wrapped  by  graphene  as  high  performance  anodes  for
                 supported Fe 3O 4 lithium battery anodes with long cycle life and high   lithium-ion  batteries[J].  Chemical  Engineering  Journal,  2019,  355:
                 rate capability[J]. Nano Letters, 2013, 13(12): 6136-6143.     805-814.
            [13]  Kang E, Jung Y S, Cavanagh A S, et al. Fe 3O 4 nanoparticles confined   [28]  Chen M, Jiang J, Zhou X, et al. Preparation of akaganeite nanorods
                 in  mesocellular  carbon  foam  for  high performance  anode  materials   and  their  transformation  to  sphere  shape  hematite[J].  Journal  of
                 for  lithium-ion  batteries[J].  Advanced  Functional  Materials,  2011,   Nanoscience & Nanotechnology, 2008, 8(8): 3942-3948.
                 21(13): 2430-2438.                            [29]  Ganguly A, Sharma S, Papakonstantinou P, et al. Probing the thermal
            [14]  Yang  T  T,  Zhu  W  K,  Liu  W  L,  et al.  Preparation  of  yolk-shell   deoxygenation  of  graphene  oxide  using  high-resolution  in  situ
                 Fe 3O 4@N-doped carbon nanocomposite particles as anode in lithium   X-ray-based spectroscopies[J]. The Journal of Physical Chemistry C,
                 ion  batteries[J].  Journal  of  Materials  Science  Materials  in   2011, 115(34): 17009-17019.
                 Electronics, 2017, 28(16): 11569-11575.       [30]  Liu  Y,  Huang  K,  Luo  H,  et al.  Nitrogen-doped  graphene-Fe 3O 4
            [15]  Liu J, Xu X, Hu R, et al. Uniform hierarchical Fe 3O 4@polypyrrole   architecture as anode material for improved Li-ion storage[J]. RSC
                 nanocages  for  superior  lithium  ion  battery  anodes[J].  Advanced   Advances, 2014, 4(34): 17653-17659.
                 Energy Materials, 2016, 6(13): DOI:10.1002/aenm.201600256.     [31]  He C, Wu S, Zhao N, et al. Carbon-encapsulated Fe 3O 4 nanoparticles
            [16]  Poizot  P,  Laruelle S,  Grugeon S, et al.  Nano-sized transition-metal   as a high-rate lithium ion battery anode material[J]. ACS Nano, 2013,
                 oxides  as  negative-electrode  materials  for  lithium-ion  batteries[J].   7(5): 4459-4469.
                 Nature, 2010, 32(3): 496-499.                 [32]  Piao  Y, Kim  H S,  Sung Y E,  et al.  Facile  scalable  synthesis  of
            [17]  Zhang W, Wu X, Hu J, et al. Carbon coated Fe 3O 4 nanospindles as a   magnetite nanocrystals embedded in carbon matrix as superior anode
                 superior  anode  material  for  lithium-ion  batteries[J].  Advanced   materials  for  lithium-ion  batteries[J].  Chemical  Communications,
                 Functional Materials, 2010, 18(24): 3941-3946.     2010, 46(1): 118-120.
            [18]  Hwang  J  K,  Lim  H  S,  Sun  Y  K,  et al.  Monodispersed  hollow   [33]  Yang  Z,  Shen  J,  Archer  L  A.  An  in  situ  method  of  creating metal
                 carbon/Fe 3O 4  composite  microspheres  for  high  performance  anode   oxide-carbon composites and their application as anode materials for
                 materials in lithium-ion batteries[J]. Journal of Power Sources, 2013,   lithium-ion  batteries[J].  Journal  of  Materials  Chemistry,  2011,
                 244: 538-543.                                     21(30): 11092-11097.
            [19]  Tang Y, Allen B L, Kauffman D R, et al. Electrocatalytic activity of   [34]  Wang  P,  Gao  M,  Pan  H,  et al.  A  facile  synthesis  of  Fe 3O 4/C
                 nitrogen-doped  carbon  nanotube  cups[J].  Journal  of  the  Mmerican   composite with high cycle stability as anode material for lithium-ion
                 Chemical Society, 2009, 131(37): 13200-13201.     batteries[J]. Journal of Power Sources, 2013, 239: 466-474.
            [20]  Wang  Y,  Gao  Y,  Shao  J,  et al.  Ultrasmall  Fe 3O 4  nanodots  within   [35]  Tian  X,  Xu  X,  Wang  J,  et al.  Facile  complex-coprecipitation
                 N-doped  carbon  frameworks  from  MOFs  uniformly  anchored  on   synthesis  of  mesoporous  Fe 3O 4  nanocages  and  their  high  lithium
                 carbon nanowebs for boosting Li-ion storage[J]. Journal of Materials   storage  capacity  as  anode  material  for  lithium-ion  batteries[J].
                 Chemistry A, 2018, 6(8): 3659-3666.               Electrochimica Acta, 2015, 160: 114-122.
            [21]  Chen L, Huang Z, Liang H, et al. Bacterial-cellulose-derived carbon   [36]  Fei H, Ma L, Qiang S, et al. Rationally designed carbon-coated Fe 3O 4
                 nanofiber@MnO 2  and  nitrogen-doped  carbon  nanofiber  electrode   coaxial  nanotubes  with  hierarchical  porosity  as  high-rate  anodes  for
                 materials: An asymmetric supercapacitor with high energy and power   lithium ion batteries[J]. Nano Research, 2014, 7(11): 1706-1717.
                 density[J]. Advanced Materials, 2013, 25(34): 4746-4752.     [37]  Huang G, Xu S, Lu S, et al. Porous polyhedral and fusiform Co 3O 4
            [22]  Li  Y,  Wang  J,  Li  X,  et al.  Nitrogen-doped  carbon  nanotubes  as   anode  materials  for  high-performance  lithium-ion  batteries[J].
                 cathode for lithium–air batteries[J]. Electrochemistry Communications,   Electrochimica Acta, 2014, 135(22): 420-427.
                 2011, 13(7): 668-672.                         [38]  Zeng  Z,  Zhao  H,  Lv  P,  et al.  Electrochemical  properties  of  iron
            [23]  Wu Q, Zhao R, Liu W, et al. In-depth nanocrystallization enhanced   oxides/carbon  nanotubes  as  anode  material  for  lithium  ion
                 Li-ions  batteries  performance  with  nitrogen-doped  carbon  coated   batteries[J]. Journal of Power Sources, 2015, 274(12): 1091-1099.
                 Fe 3O 4  yolk-shell  nanocapsules[J].  Journal  of  Power  Sources,  2017,   [39]  Liwei  S,  Zhen  Z,  Manman  R.  Core  double-shell  Si@SiO 2@C
                 344: 74-84.                                       nanocomposites as anode materials for Li-ion batteries[J]. Chemical
            [24]  Chen  M,  Shen  X,  Chen  K,  et al.  Nitrogen-doped  mesoporous   Communications, 2010, 46(15): 2590-2592.
                 carbon-encapsulation urchin-like Fe 3O 4 as anode materials for high   [40]  Wang L, Tang W, Jing Y, et al. Do transition metal carbonates have
                 performance  Li-ions  batteries[J].  Electrochimica  Acta,  2016,  195:   greater  lithium  storage  capability  than  oxides?  A  case  study  of
                 94-105.                                           monodisperse  CoCO 3  and  CoO  microspindles[J].  ACS  Applied
            [25]  Chen Q W, Zhong W, Zhang J N, et al. Fe 3O 4 nanorods in N-doped   Mateialsr Interfaces, 2014, 6(15): 12346-12352
                 carbon  matrix  with  pseudo-capacitive  behaviors  as  an  excellent   [41]  Gallant  B  M,  Mitchell  R  R,  Kwabi  D  G,  et al.  Chemical  and
                 anode  for  subzero  lithium-ion  batteries[J].  Journal  of  Alloys  and   morphological changes of Li−O 2 battery electrodes upon cycling[J].
                 Compounds, 2019, 772: 557-564.                    Journal Physical chemistry C, 2012, 116: 20800-20805.
            [26]  Liu B, Zhang Q, Jin Z, et al. Uniform pomegranate-like nanoclusters   [42]  Zhang  T,  Zhou  H  S.  A  reversible  long-life  lithium–air  battery  in
                 organized by ultrafine transition metal oxide@nitrogen-doped carbon   ambient air[J]. Nature Communications, 2013, 4: 1817-1824.
   154   155   156   157   158   159   160   161   162   163   164