Page 159 - 精细化工2020年第2期
P. 159
第 2 期 吴启超,等: 两步法合成交联碳/氮双掺杂 Fe 3 O 4 锂离子阳极材料 ·361·
[11] Jing S U, Cao M, Ling R, et al. Fe 3O 4-Graphene nanocomposites subunits with enhanced lithium storage properties[J]. Adv Energy
with improved lithium storage and magnetism properties[J]. Journal Mater, 2017, 8(7): DOI:10.1002/aenm.201702347.
of Physical Chemistry C, 2011, 115(30): 14469-14477. [27] Liao C, Wu S. Pseudocapacitance behavior on Fe 3O 4-pillared SiO x
[12] Luo J, Liu J, Zeng Z, et al. Three-dimensional graphene foam microsphere wrapped by graphene as high performance anodes for
supported Fe 3O 4 lithium battery anodes with long cycle life and high lithium-ion batteries[J]. Chemical Engineering Journal, 2019, 355:
rate capability[J]. Nano Letters, 2013, 13(12): 6136-6143. 805-814.
[13] Kang E, Jung Y S, Cavanagh A S, et al. Fe 3O 4 nanoparticles confined [28] Chen M, Jiang J, Zhou X, et al. Preparation of akaganeite nanorods
in mesocellular carbon foam for high performance anode materials and their transformation to sphere shape hematite[J]. Journal of
for lithium-ion batteries[J]. Advanced Functional Materials, 2011, Nanoscience & Nanotechnology, 2008, 8(8): 3942-3948.
21(13): 2430-2438. [29] Ganguly A, Sharma S, Papakonstantinou P, et al. Probing the thermal
[14] Yang T T, Zhu W K, Liu W L, et al. Preparation of yolk-shell deoxygenation of graphene oxide using high-resolution in situ
Fe 3O 4@N-doped carbon nanocomposite particles as anode in lithium X-ray-based spectroscopies[J]. The Journal of Physical Chemistry C,
ion batteries[J]. Journal of Materials Science Materials in 2011, 115(34): 17009-17019.
Electronics, 2017, 28(16): 11569-11575. [30] Liu Y, Huang K, Luo H, et al. Nitrogen-doped graphene-Fe 3O 4
[15] Liu J, Xu X, Hu R, et al. Uniform hierarchical Fe 3O 4@polypyrrole architecture as anode material for improved Li-ion storage[J]. RSC
nanocages for superior lithium ion battery anodes[J]. Advanced Advances, 2014, 4(34): 17653-17659.
Energy Materials, 2016, 6(13): DOI:10.1002/aenm.201600256. [31] He C, Wu S, Zhao N, et al. Carbon-encapsulated Fe 3O 4 nanoparticles
[16] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal as a high-rate lithium ion battery anode material[J]. ACS Nano, 2013,
oxides as negative-electrode materials for lithium-ion batteries[J]. 7(5): 4459-4469.
Nature, 2010, 32(3): 496-499. [32] Piao Y, Kim H S, Sung Y E, et al. Facile scalable synthesis of
[17] Zhang W, Wu X, Hu J, et al. Carbon coated Fe 3O 4 nanospindles as a magnetite nanocrystals embedded in carbon matrix as superior anode
superior anode material for lithium-ion batteries[J]. Advanced materials for lithium-ion batteries[J]. Chemical Communications,
Functional Materials, 2010, 18(24): 3941-3946. 2010, 46(1): 118-120.
[18] Hwang J K, Lim H S, Sun Y K, et al. Monodispersed hollow [33] Yang Z, Shen J, Archer L A. An in situ method of creating metal
carbon/Fe 3O 4 composite microspheres for high performance anode oxide-carbon composites and their application as anode materials for
materials in lithium-ion batteries[J]. Journal of Power Sources, 2013, lithium-ion batteries[J]. Journal of Materials Chemistry, 2011,
244: 538-543. 21(30): 11092-11097.
[19] Tang Y, Allen B L, Kauffman D R, et al. Electrocatalytic activity of [34] Wang P, Gao M, Pan H, et al. A facile synthesis of Fe 3O 4/C
nitrogen-doped carbon nanotube cups[J]. Journal of the Mmerican composite with high cycle stability as anode material for lithium-ion
Chemical Society, 2009, 131(37): 13200-13201. batteries[J]. Journal of Power Sources, 2013, 239: 466-474.
[20] Wang Y, Gao Y, Shao J, et al. Ultrasmall Fe 3O 4 nanodots within [35] Tian X, Xu X, Wang J, et al. Facile complex-coprecipitation
N-doped carbon frameworks from MOFs uniformly anchored on synthesis of mesoporous Fe 3O 4 nanocages and their high lithium
carbon nanowebs for boosting Li-ion storage[J]. Journal of Materials storage capacity as anode material for lithium-ion batteries[J].
Chemistry A, 2018, 6(8): 3659-3666. Electrochimica Acta, 2015, 160: 114-122.
[21] Chen L, Huang Z, Liang H, et al. Bacterial-cellulose-derived carbon [36] Fei H, Ma L, Qiang S, et al. Rationally designed carbon-coated Fe 3O 4
nanofiber@MnO 2 and nitrogen-doped carbon nanofiber electrode coaxial nanotubes with hierarchical porosity as high-rate anodes for
materials: An asymmetric supercapacitor with high energy and power lithium ion batteries[J]. Nano Research, 2014, 7(11): 1706-1717.
density[J]. Advanced Materials, 2013, 25(34): 4746-4752. [37] Huang G, Xu S, Lu S, et al. Porous polyhedral and fusiform Co 3O 4
[22] Li Y, Wang J, Li X, et al. Nitrogen-doped carbon nanotubes as anode materials for high-performance lithium-ion batteries[J].
cathode for lithium–air batteries[J]. Electrochemistry Communications, Electrochimica Acta, 2014, 135(22): 420-427.
2011, 13(7): 668-672. [38] Zeng Z, Zhao H, Lv P, et al. Electrochemical properties of iron
[23] Wu Q, Zhao R, Liu W, et al. In-depth nanocrystallization enhanced oxides/carbon nanotubes as anode material for lithium ion
Li-ions batteries performance with nitrogen-doped carbon coated batteries[J]. Journal of Power Sources, 2015, 274(12): 1091-1099.
Fe 3O 4 yolk-shell nanocapsules[J]. Journal of Power Sources, 2017, [39] Liwei S, Zhen Z, Manman R. Core double-shell Si@SiO 2@C
344: 74-84. nanocomposites as anode materials for Li-ion batteries[J]. Chemical
[24] Chen M, Shen X, Chen K, et al. Nitrogen-doped mesoporous Communications, 2010, 46(15): 2590-2592.
carbon-encapsulation urchin-like Fe 3O 4 as anode materials for high [40] Wang L, Tang W, Jing Y, et al. Do transition metal carbonates have
performance Li-ions batteries[J]. Electrochimica Acta, 2016, 195: greater lithium storage capability than oxides? A case study of
94-105. monodisperse CoCO 3 and CoO microspindles[J]. ACS Applied
[25] Chen Q W, Zhong W, Zhang J N, et al. Fe 3O 4 nanorods in N-doped Mateialsr Interfaces, 2014, 6(15): 12346-12352
carbon matrix with pseudo-capacitive behaviors as an excellent [41] Gallant B M, Mitchell R R, Kwabi D G, et al. Chemical and
anode for subzero lithium-ion batteries[J]. Journal of Alloys and morphological changes of Li−O 2 battery electrodes upon cycling[J].
Compounds, 2019, 772: 557-564. Journal Physical chemistry C, 2012, 116: 20800-20805.
[26] Liu B, Zhang Q, Jin Z, et al. Uniform pomegranate-like nanoclusters [42] Zhang T, Zhou H S. A reversible long-life lithium–air battery in
organized by ultrafine transition metal oxide@nitrogen-doped carbon ambient air[J]. Nature Communications, 2013, 4: 1817-1824.