Page 61 - 精细化工2020年第2期
P. 61
第 2 期 王 珏,等: 石墨烯/SnO 2 /Si@PPy 复合材料的制备及电化学性能 ·263·
7(7).DOI:10.1002/aenm.20 1601578.
[5] Gonzalez A F, Yang N H, Liu R S. Silicon anode design for
lithium-ion batteries: progress and perspectives[J]. The Journal of
Physical Chemistry C, 2017, 121(50): 27775-27787.
[6] Nava R, Cremar L D, Agubra V, et al. Centrifugal spinning: An
alternative for large scale production of silicon-carbon composite
nanofibers for lithium ion battery anodes[J]. ACS Applied Materials
& Interfaces, 2016, 8(43): 29365-29372.
[7] He Z, Wu X, Yi Z, et al. Silicon/graphene/carbon hierarchical
structure nanofibers for high performance lithium ion batteries[J].
Materials Letters, 2017, 200: 128-131.
[8] Chen Y, Hu Y, Shen Z, et al. Hollow core-shell structured silicon@
carbon nanoparticles embed in carbon nanofibers as binder-free
图 10 GSSP 负极的 EIS 谱图 anodes for lithium-ion batteries[J]. Journal of Power Sources, 2017,
Fig. 10 EIS spectra of GSSP anode 342: 467-475.
[9] Chen Y, Hu Y, Shen Z, et al. Sandwich structure of graphene-
protected silicon/carbon nanofibers for lithium-ion battery anodes[J].
3 结论 Electrochimica Acta, 2016, 210: 53-60.
[10] Zhou X, Liu Y, Du C, et al. Polyaniline-encapsulated silicon on
(1)本文采用微波水热法制备了 GS 复合材料, three-dimensional carbon nanotubes foam with enhanced electrochemical
performance for lithium-ion batteries[J]. Journal of Power Sources,
采用原位氧化聚合法使 PPy 沿 Si 粉表面包覆生长得
2018, 381: 156-163.
到 SP 复合材料,最后通过微波水热组装法制备了 [11] Rao J, Liu N, Li L, et al. A high performance wire-shaped flexible
GSSP 复合材料。 lithium-ion battery based on silicon nanoparticles within polypyrrole/
twisted carbon fibers[J]. RSC Advances, 2017, 7(43): 26601-26607.
(2)GSSP 复合材料具有较大的比表面积以及 [12] Wang Q, Li R, Zhou X, et al. Polythiophene-coated nano-silicon
较好的导电性,作为锂电池电极材料表现出优异的 composite anodes with enhanced performance for lithium-ion
电化学性能。在 100 mA/g 电流密度下,放电和充电 batteries[J]. Journal of Solid State Electrochemistry, 2016, 20(5):
1331-1336.
的平均比容量分别为 948.44 和 869.63 mA·h/g;电流 [13] Liang G, Qin X, Zou J, et al. Electrosprayed silicon-embedded
密度增加到 1000 mA/g 时,放电和充电的比容量保 porous carbon microspheres as lithium-ion battery anodes with
exceptional rate capacities[J]. Carbon, 2018, 127: 424-431.
持率分别为 69.38%和 74.37%;电流密度再次回到 [14] Su H, Barragan A A, Geng L, et al. Colloidal synthesis of silicon-
100 mA/g 时,放电和充电的比容量保持率分别为 carbon composite material for lithium-ion batteries[J]. Angewandte
Chemie International Edition, 2017, 56(36): 10780-10785.
84.56%和 89.73%。在 1000 mA/g 电流密度下,充放
[15] Shim H C, Kim I, Woo C S, et al. Nanospherical solid electrolyte
电循环 400 次,放电和充电的比容量保持率分别为 interface layer formation in binder-free carbon nanotube aerogel/Si
90.69%和 89.34%。 nanohybrids to provide lithium-ion battery anodes with a long-cycle
life and high capacity[J]. Nanoscale, 2017, 9(14): 4713-4720.
(3)GSSP 复合材料优异的锂电池性能主要归 [16] Bai X, Yu Y, Kung H H, et al. Si@SiO x/graphene hydrogel composite
因于 GS 与 SP 的协同作用。PPy 对 Si 膨胀的限制作 anode for lithium-ion battery[J]. Journal of Power Sources, 2016,
用,延长了 GSSP 复合材料循环寿命,GS 复合材料 306: 42-48.
[17] Zhang W, Zuo P, Chen C, et al. Facile synthesis of binder-free
较高的导电性能提高了 GSSP 复合材料的倍率性能, reduced graphene oxide/silicon anode for high-performance lithium
因此,GSSP 具有较大的比容量。 ion batteries[J]. Journal of Power Sources, 2016, 312: 216-222.
[18] Zhao T, She S, Ji X, et al. In-situ growth amorphous carbon nanotube
本文制备的 GSSP 复合材料作为一种大容量、
on silicon particles as lithium-ion battery anode materials[J]. Journal
长循环寿命的电极材料具有良好的开发前景,可以 of Alloys and Compounds, 2017, 708: 500-507.
应用于大容量锂离子电池的研制。 [19] Xiao L, Sehlleier Y H, Dobrowolny S, et al. Si-CNT/rGO
nanoheterostructures as high-performance lithium-ion-battery anodes
[J]. Chem Electro Chem, 2015, 2(12): 1983-1990.
参考文献:
[20] Tian S, Zhu G, Tang Y, et al. Three-dimensional cross-linking
[1] Zuo X, Zhu J, Muller-Buschbaum P, et al. Silicon based lithium-ion composite of graphene, carbon nanotube and Si nanoparticles for
battery anodes: A chronicle perspective review[J]. Nano Energy, lithium ion batteries anode[J]. Nanotechnology, 2018, 29(12).
2017, 31: 113-143. DOI:10.1088/1361-6528/aaa84e.
[2] Feng K, Li M, Liu W, et al. Silicon-based anodes for lithium-ion [21] Feng K, Ahn W, Lui G, et al. Implementing an in-situ carbon network
batteries: From fundamentals to practical applications[J]. Small, in Si/reduced graphene oxide for high performance lithium-ion
2018, 14(8).DOI:10.1002/smll.201702737. battery anodes[J]. Nano Energy, 2016, 19: 187-197.
[3] Choi S, Kwon T W, Coskun A, et al. Highly elastic binders [22] Yang Xiaowu (杨晓武), Yang Rui (杨蕊), Qiu Liewei (秋列维), et
integrating polyrotaxanes for silicon microparticle anodes in lithium al. Application of double layer structure Si/PPy composite anode in
ion batteries[J]. Science, 2017, 357(6348): 279-283. lithium-ion batteries[J]. Fine Chemicals (精细化工), 2018, 35(8):
[4] Zhu Y, Choi S H, Fan X, et al. Recent progress on spray pyrolysis for 1376-1381.
high performance electrode materials in lithium and sodium
rechargeable batteries[J]. Advanced Energy Materials, 2017, (下转第 289 页)