Page 61 - 精细化工2020年第2期
P. 61

第 2 期                  王   珏,等:  石墨烯/SnO 2 /Si@PPy 复合材料的制备及电化学性能                         ·263·


                                                                   7(7).DOI:10.1002/aenm.20 1601578.
                                                               [5]   Gonzalez  A  F,  Yang  N  H,  Liu  R  S.  Silicon  anode  design  for
                                                                   lithium-ion  batteries:  progress  and  perspectives[J].  The  Journal  of
                                                                   Physical Chemistry C, 2017, 121(50): 27775-27787.
                                                               [6]   Nava  R,  Cremar  L  D,  Agubra  V,  et al.  Centrifugal  spinning:  An
                                                                   alternative  for  large  scale  production  of  silicon-carbon  composite
                                                                   nanofibers for lithium ion battery anodes[J]. ACS Applied Materials
                                                                   & Interfaces, 2016, 8(43): 29365-29372.
                                                               [7]   He Z,  Wu X,  Yi Z,  et al.  Silicon/graphene/carbon  hierarchical
                                                                   structure  nanofibers  for  high  performance  lithium  ion  batteries[J].
                                                                   Materials Letters, 2017, 200: 128-131.
                                                               [8]   Chen Y, Hu Y, Shen Z, et al. Hollow core-shell structured silicon@
                                                                   carbon  nanoparticles  embed  in  carbon  nanofibers  as  binder-free
                       图 10  GSSP 负极的 EIS 谱图                       anodes for lithium-ion batteries[J]. Journal of Power Sources, 2017,
                     Fig. 10    EIS spectra of GSSP anode          342: 467-475.
                                                               [9]   Chen Y,  Hu Y,  Shen Z,  et al.  Sandwich  structure  of  graphene-
                                                                   protected silicon/carbon nanofibers for lithium-ion battery anodes[J].
            3   结论                                                 Electrochimica Acta, 2016, 210: 53-60.
                                                               [10]  Zhou  X,  Liu  Y,  Du  C,  et al.  Polyaniline-encapsulated  silicon  on
                (1)本文采用微波水热法制备了 GS 复合材料,                           three-dimensional carbon nanotubes foam with enhanced electrochemical
                                                                   performance for lithium-ion batteries[J]. Journal of Power Sources,
            采用原位氧化聚合法使 PPy 沿 Si 粉表面包覆生长得
                                                                   2018, 381: 156-163.
            到 SP 复合材料,最后通过微波水热组装法制备了                           [11]  Rao J, Liu N, Li L, et al. A high performance wire-shaped flexible
            GSSP 复合材料。                                             lithium-ion battery based on silicon nanoparticles within polypyrrole/
                                                                   twisted carbon fibers[J]. RSC Advances, 2017, 7(43): 26601-26607.
                (2)GSSP 复合材料具有较大的比表面积以及                        [12]  Wang  Q,  Li  R,  Zhou  X,  et al.  Polythiophene-coated  nano-silicon
            较好的导电性,作为锂电池电极材料表现出优异的                                 composite  anodes  with  enhanced  performance  for  lithium-ion
            电化学性能。在 100 mA/g 电流密度下,放电和充电                           batteries[J].  Journal  of  Solid  State  Electrochemistry,  2016,  20(5):
                                                                   1331-1336.
            的平均比容量分别为 948.44 和 869.63 mA·h/g;电流                [13]  Liang  G,  Qin  X,  Zou  J,  et al.  Electrosprayed  silicon-embedded
            密度增加到 1000 mA/g 时,放电和充电的比容量保                           porous  carbon  microspheres  as  lithium-ion  battery  anodes  with
                                                                   exceptional rate capacities[J]. Carbon, 2018, 127: 424-431.
            持率分别为 69.38%和 74.37%;电流密度再次回到                      [14]  Su H, Barragan A A, Geng L, et al. Colloidal synthesis of silicon-
            100  mA/g 时,放电和充电的比容量保持率分别为                            carbon  composite  material  for  lithium-ion  batteries[J].  Angewandte
                                                                   Chemie International Edition, 2017, 56(36): 10780-10785.
            84.56%和 89.73%。在 1000 mA/g 电流密度下,充放
                                                               [15]  Shim H C, Kim I,  Woo C S, et al.  Nanospherical solid electrolyte
            电循环 400 次,放电和充电的比容量保持率分别为                              interface  layer  formation  in  binder-free  carbon  nanotube  aerogel/Si
            90.69%和 89.34%。                                        nanohybrids to provide lithium-ion battery anodes with a long-cycle
                                                                   life and high capacity[J]. Nanoscale, 2017, 9(14): 4713-4720.
                (3)GSSP 复合材料优异的锂电池性能主要归                        [16]  Bai X, Yu Y, Kung H H, et al. Si@SiO x/graphene hydrogel composite
            因于 GS 与 SP 的协同作用。PPy 对 Si 膨胀的限制作                       anode  for  lithium-ion  battery[J].  Journal  of  Power  Sources,  2016,
            用,延长了 GSSP 复合材料循环寿命,GS 复合材料                            306: 42-48.
                                                               [17]  Zhang  W,  Zuo  P,  Chen  C,  et al.  Facile  synthesis  of  binder-free
            较高的导电性能提高了 GSSP 复合材料的倍率性能,                             reduced graphene oxide/silicon anode for high-performance lithium
            因此,GSSP 具有较大的比容量。                                      ion batteries[J]. Journal of Power Sources, 2016, 312: 216-222.
                                                               [18]  Zhao T, She S, Ji X, et al. In-situ growth amorphous carbon nanotube
                 本文制备的 GSSP 复合材料作为一种大容量、
                                                                   on silicon particles as lithium-ion battery anode materials[J]. Journal
            长循环寿命的电极材料具有良好的开发前景,可以                                 of Alloys and Compounds, 2017, 708: 500-507.
            应用于大容量锂离子电池的研制。                                    [19]  Xiao  L,  Sehlleier  Y  H,  Dobrowolny  S,  et al.  Si-CNT/rGO
                                                                   nanoheterostructures as high-performance lithium-ion-battery anodes
                                                                   [J]. Chem Electro Chem, 2015, 2(12): 1983-1990.
            参考文献:
                                                               [20]  Tian  S,  Zhu  G,  Tang  Y,  et al.  Three-dimensional  cross-linking
            [1]   Zuo X, Zhu J, Muller-Buschbaum P, et al. Silicon based lithium-ion   composite  of  graphene,  carbon  nanotube  and  Si  nanoparticles  for
                 battery  anodes:  A  chronicle  perspective  review[J].  Nano  Energy,   lithium  ion  batteries  anode[J].  Nanotechnology,  2018,  29(12).
                 2017, 31: 113-143.                                DOI:10.1088/1361-6528/aaa84e.
            [2]   Feng  K, Li  M, Liu W,  et al.  Silicon-based  anodes  for  lithium-ion   [21]  Feng K, Ahn W, Lui G, et al. Implementing an in-situ carbon network
                 batteries:  From  fundamentals  to  practical  applications[J].  Small,   in  Si/reduced  graphene  oxide  for  high  performance  lithium-ion
                 2018, 14(8).DOI:10.1002/smll.201702737.           battery anodes[J]. Nano Energy, 2016, 19: 187-197.
            [3]   Choi  S,  Kwon  T  W,  Coskun  A,  et al.  Highly  elastic  binders   [22]  Yang Xiaowu (杨晓武), Yang Rui (杨蕊), Qiu Liewei (秋列维), et
                 integrating polyrotaxanes for silicon microparticle anodes in lithium   al. Application of double layer structure Si/PPy composite anode in
                 ion batteries[J]. Science, 2017, 357(6348): 279-283.     lithium-ion  batteries[J].  Fine  Chemicals  (精细化工),  2018,  35(8):
            [4]   Zhu Y, Choi S H, Fan X, et al. Recent progress on spray pyrolysis for   1376-1381.
                 high  performance  electrode  materials  in  lithium  and  sodium
                 rechargeable  batteries[J].  Advanced  Energy  Materials,  2017,             (下转第 289 页)
   56   57   58   59   60   61   62   63   64   65   66