Page 32 - 《精细化工》2020年第3期
P. 32

·450·                             精细化工   FINE CHEMICALS                                  第 37 卷

            4    总结与展望                                             reaction properties[J]. Dalton Transactions, 2017, 46(10): 3295-3302.
                                                               [9]   ZHANG L, ZHAO K N, LUO Y Z, et al. Acetylene black induced
                 该文总结了近年来国内外关于钒酸镍(Ni 3V 2O 8、                      heterogeneous  growth  of  macroporous  CoV 2O 6  nanosheet  for
            NiV 3 O 8 等)材料的合成方法、晶体结构性质及作为                          high-rate pseudocapacitive lithium-ion battery anode[J]. ACS applied
            锂离子电池负极材料应用的研究进展。重点讨论了                                 materials & interfaces, 2016, 8(11): 7139-7146.
                                                               [10]  YANG  G,  CUI  H,  YANG  G,  et al.  Self-assembly  of  Co 3V 2O 8
            改善钒酸镍电化学性能的几种方法。电极材料微纳
                                                                   multilayered nanosheets: controllable synthesis, excellent Li-storage
            米化、复合化、表面包覆等方法都可以在一定程度
                                                                   properties, and investigation of electrochemical mechanism[J]. ACS
            上改善钒酸镍材料的电化学性能。但钒酸镍的制备                                 Nano, 2014, 8(5): 4474-4487.
            多在水溶液中制备,方法比较单一,开发新型溶剂                             [11]  NI S, MA J, LV X, et al. The preparation of NiV 3O 8/Ni composite via
            (比如离子液体等)或其他先进制备方法对于钒酸                                 an  in  situ  corrosion  method  and  its  use  as  a  new  sort  of  anode
            镍的应用发展具有重要意义。到目前为止,关于                                  material  for  Li-ion  batteries[J].  Journal  of  Materials  Chemistry  A,
                                                                   2014, 2(24): 8995-8998.
            Ni 3 V 2 O 8 等作为锂离子电池负极材料的报道还不多,
                                                               [12]  YANG G Z, LI S Y, WU M M, et al. Zinc pyrovanadate nanosheets
            对于 Ni 3 V 2 O 8 等纳米材料组成、结构与储锂性能之
                                                                   of atomic thickness: excellent Li-storage properties and investigation
            间的构效关系及机理需要进一步深入研究。从实际                                 of their electrochemical mechanism[J]. Journal of Materials Chemistry
            应用的角度考虑,钒酸镍材料成本低廉,具有较好                                 A, 2016, 4(28): 10974-10985.
            的应用潜力,但钒酸镍纳米材料的大规模工业生产                             [13]  LI  M  L,  GAO  Y,  CHEN  N,  et al.  Cu 3V 2O 8  Nanoparticles  as
            仍然具有很大挑战,开发规模化生产切实可行的合                                 intercalation-type  anode  material  for  lithium-ion  batteries[J].
                                                                   Chemistry-A European Journal, 2016, 22(32): 11405-11412.
            成工艺(比如,以沉淀法合成性能参数优异的钒酸
                                                               [14]  SPAHR M E, NOVÁK P, SCHEIFELE W, et al. Electrochemistry of
            镍,并与碳材料复合)是钒酸镍材料能够广泛应用
                                                                   chemically lithiated NaV 3O 8: a positive electrode material for use in
            的基础。目前,关于将 Ni 3 V 2 O 8 作为锂离子电池负                       rechargeable lithium-Ion batteries[J]. Journal of The Electrochemical
            极材料用在全电池方面的报道极少,下一步应加强                                 Society, 1998, 145(2): 421-427.
            其应用在全电池中的性能研究,促进 Ni 3 V 2 O 8 材料                   [15]  GAN L H, DENG D, ZHANG Y, et al. Zn 3V 2O 8 hexagon nanosheets:
            在锂离子电池中的实际应用和发展。                                       a  high-performance  anode  material  for  lithium-ion  batteries[J].
                                                                   Journal of Materials Chemistry A, 2014, 2(8): 2461-2466.
            参考文献:                                              [16]  CHENG  F  Y,  CHEN  J.  Transition  metal  vanadium  oxides  and
                                                                   vanadate  materials  for  lithium  batteries[J].  Journal  of  Materials
            [1]   STENNING  A  H,  MARTIN  C  B.  An  analytical  and  experimental
                                                                   Chemistry, 2011, 21(27): 9841-9848.
                 study  of  air-lift  pump  performance[J].  Journal  of  Engineering  for
                 Power, 1968, 90(2): 106-110.                  [17]  LU Y, NAI J W, LOU X W. Formation of NiCo 2V 2O 8 yolk-double
            [2]   TANG Y X, ZHANG Y Y, LI W L, et al. Rational material design for   shell spheres with enhanced lithium storage properties[J]. Angewandte
                 ultrafast  rechargeable  lithium-ion  batteries[J].  Chemical  Society   Chemie International Edition, 2018, 57(11): 2899-2903.
                 Reviews, 2015, 44(17): 5926-5940.             [18]  CHENG F, CHEN J. Transition metal vanadium oxides and vanadate
            [3]   WU H B, CHEN J S, HNG H H, et al. Nanostructured metal oxide-   materials  for  lithium  batteries[J].  Journal  of  Materials  Chemistry,
                 based  materials  as  advanced  anodes  for  lithium-ion  batteries[J].   2011, 21(27): 9841-9848.
                 Nanoscale, 2012, 4(8): 2526-2542.             [19]  GONG F, XIA D W, BI C, et al. Systematic comparison of hollow
            [4]   ZHANG  Q  T,  DAI  Q  Q,  LI  M,  et al.  Incorporation  of  MnO   and  solid  Co 3V 2O 8,  micro-pencils  as  advanced  anode  materials  for
                 nanoparticles  inside  porous  carbon  nanotubes  originated  from   lithium ion batteries[J]. Electrochimica Acta, 2018, 264: 358-366.
                 conjugated microporous polymers for lithium storage[J]. Journal of   [20]  ZHU  C,  LIU  Z  Q,  WANG  J,  et al.  Novel  Co 2VO 4  anodes  using
                 Materials Chemistry A, 2016, 4(48): 19132-19139.   ultralight  3D  metallic  current  collector  and  carbon  sandwiched
            [5]   WANG  G  P,  ZHANG  Q  T,  YU  Z  L,  et al.  The  effect  of  different   structures  for  high-performance  Li-ion  batteries[J].  Small,  2017,
                 kinds of nano-carbon conductive additives in lithium ion batteries on   13(34): 1260-1269.
                 the resistance and electrochemical behavior of the LiCoO 2 composite   [21]  ZHANG Q, PEI J, CHEN G, et al. Co 3V 2O 8 hexagonal pyramid with
                 cathodes[J]. Solid State Ionics, 2008, 179(7/8): 263-268.   tunable  inner  structure  as  high  performance  anode  materials  for
            [6]   LI B, SHAO R W, YAN H J, et al. Understanding the stability for   lithium ion battery[J]. Electrochimica Acta, 2017, 238: 227-236.
                 Li-rich  layered  oxide  Li 2RuO 3  cathode[J].  Advanced  Functional   [22]  ZHANG  S  Y,  HU  R  S,  LIU  L,  et al.  Hydrothermal  synthesis  of
                 Materials, 2016, 26(9): 1330-1337.                MnV 2O 6  nanobelts  and  its  application  in  lithium-ion  battery[J].
            [7]   YAN  C  S, CHEN  G, SUN J X,  et al.  Edge  dislocation  surface   Materials Letters, 2014, 124: 57-60.
                 modification: A new and efficient strategy for realizing outstanding   [23]  DING  D  R,  ZHANG  Y  J,  LI  G,  et al.  2D  Manganese  vanadate
                 lithium storage performance[J]. Nano Energy, 2015, 15: 558-566.   nanoflakes  as  high-performance  anode  for  lithium-ion  batteries[J].
            [8]   ZHANG D J, ZHANG J C, YUAN B Q, et al. Facile synthesis of 3D   Chemistry-An Asian Journal, 2014, 9: 1265-1269.
                 porous Co 3V 2O 8 nanoroses and 2D NiCo 2V 2O 8 nanoplates with high   [24]  CHAI  H,  WANG  Y  C,  FANG  Y  C,  et al.  Low-cost  synthesis  of
                 performance  surpercapacitor  and  electrocatalytic  oxygen  evolution   hierarchical  Co 3V 2O 8  microsphere  as  high-performance  anode
   27   28   29   30   31   32   33   34   35   36   37