Page 32 - 《精细化工》2020年第3期
P. 32
·450· 精细化工 FINE CHEMICALS 第 37 卷
4 总结与展望 reaction properties[J]. Dalton Transactions, 2017, 46(10): 3295-3302.
[9] ZHANG L, ZHAO K N, LUO Y Z, et al. Acetylene black induced
该文总结了近年来国内外关于钒酸镍(Ni 3V 2O 8、 heterogeneous growth of macroporous CoV 2O 6 nanosheet for
NiV 3 O 8 等)材料的合成方法、晶体结构性质及作为 high-rate pseudocapacitive lithium-ion battery anode[J]. ACS applied
锂离子电池负极材料应用的研究进展。重点讨论了 materials & interfaces, 2016, 8(11): 7139-7146.
[10] YANG G, CUI H, YANG G, et al. Self-assembly of Co 3V 2O 8
改善钒酸镍电化学性能的几种方法。电极材料微纳
multilayered nanosheets: controllable synthesis, excellent Li-storage
米化、复合化、表面包覆等方法都可以在一定程度
properties, and investigation of electrochemical mechanism[J]. ACS
上改善钒酸镍材料的电化学性能。但钒酸镍的制备 Nano, 2014, 8(5): 4474-4487.
多在水溶液中制备,方法比较单一,开发新型溶剂 [11] NI S, MA J, LV X, et al. The preparation of NiV 3O 8/Ni composite via
(比如离子液体等)或其他先进制备方法对于钒酸 an in situ corrosion method and its use as a new sort of anode
镍的应用发展具有重要意义。到目前为止,关于 material for Li-ion batteries[J]. Journal of Materials Chemistry A,
2014, 2(24): 8995-8998.
Ni 3 V 2 O 8 等作为锂离子电池负极材料的报道还不多,
[12] YANG G Z, LI S Y, WU M M, et al. Zinc pyrovanadate nanosheets
对于 Ni 3 V 2 O 8 等纳米材料组成、结构与储锂性能之
of atomic thickness: excellent Li-storage properties and investigation
间的构效关系及机理需要进一步深入研究。从实际 of their electrochemical mechanism[J]. Journal of Materials Chemistry
应用的角度考虑,钒酸镍材料成本低廉,具有较好 A, 2016, 4(28): 10974-10985.
的应用潜力,但钒酸镍纳米材料的大规模工业生产 [13] LI M L, GAO Y, CHEN N, et al. Cu 3V 2O 8 Nanoparticles as
仍然具有很大挑战,开发规模化生产切实可行的合 intercalation-type anode material for lithium-ion batteries[J].
Chemistry-A European Journal, 2016, 22(32): 11405-11412.
成工艺(比如,以沉淀法合成性能参数优异的钒酸
[14] SPAHR M E, NOVÁK P, SCHEIFELE W, et al. Electrochemistry of
镍,并与碳材料复合)是钒酸镍材料能够广泛应用
chemically lithiated NaV 3O 8: a positive electrode material for use in
的基础。目前,关于将 Ni 3 V 2 O 8 作为锂离子电池负 rechargeable lithium-Ion batteries[J]. Journal of The Electrochemical
极材料用在全电池方面的报道极少,下一步应加强 Society, 1998, 145(2): 421-427.
其应用在全电池中的性能研究,促进 Ni 3 V 2 O 8 材料 [15] GAN L H, DENG D, ZHANG Y, et al. Zn 3V 2O 8 hexagon nanosheets:
在锂离子电池中的实际应用和发展。 a high-performance anode material for lithium-ion batteries[J].
Journal of Materials Chemistry A, 2014, 2(8): 2461-2466.
参考文献: [16] CHENG F Y, CHEN J. Transition metal vanadium oxides and
vanadate materials for lithium batteries[J]. Journal of Materials
[1] STENNING A H, MARTIN C B. An analytical and experimental
Chemistry, 2011, 21(27): 9841-9848.
study of air-lift pump performance[J]. Journal of Engineering for
Power, 1968, 90(2): 106-110. [17] LU Y, NAI J W, LOU X W. Formation of NiCo 2V 2O 8 yolk-double
[2] TANG Y X, ZHANG Y Y, LI W L, et al. Rational material design for shell spheres with enhanced lithium storage properties[J]. Angewandte
ultrafast rechargeable lithium-ion batteries[J]. Chemical Society Chemie International Edition, 2018, 57(11): 2899-2903.
Reviews, 2015, 44(17): 5926-5940. [18] CHENG F, CHEN J. Transition metal vanadium oxides and vanadate
[3] WU H B, CHEN J S, HNG H H, et al. Nanostructured metal oxide- materials for lithium batteries[J]. Journal of Materials Chemistry,
based materials as advanced anodes for lithium-ion batteries[J]. 2011, 21(27): 9841-9848.
Nanoscale, 2012, 4(8): 2526-2542. [19] GONG F, XIA D W, BI C, et al. Systematic comparison of hollow
[4] ZHANG Q T, DAI Q Q, LI M, et al. Incorporation of MnO and solid Co 3V 2O 8, micro-pencils as advanced anode materials for
nanoparticles inside porous carbon nanotubes originated from lithium ion batteries[J]. Electrochimica Acta, 2018, 264: 358-366.
conjugated microporous polymers for lithium storage[J]. Journal of [20] ZHU C, LIU Z Q, WANG J, et al. Novel Co 2VO 4 anodes using
Materials Chemistry A, 2016, 4(48): 19132-19139. ultralight 3D metallic current collector and carbon sandwiched
[5] WANG G P, ZHANG Q T, YU Z L, et al. The effect of different structures for high-performance Li-ion batteries[J]. Small, 2017,
kinds of nano-carbon conductive additives in lithium ion batteries on 13(34): 1260-1269.
the resistance and electrochemical behavior of the LiCoO 2 composite [21] ZHANG Q, PEI J, CHEN G, et al. Co 3V 2O 8 hexagonal pyramid with
cathodes[J]. Solid State Ionics, 2008, 179(7/8): 263-268. tunable inner structure as high performance anode materials for
[6] LI B, SHAO R W, YAN H J, et al. Understanding the stability for lithium ion battery[J]. Electrochimica Acta, 2017, 238: 227-236.
Li-rich layered oxide Li 2RuO 3 cathode[J]. Advanced Functional [22] ZHANG S Y, HU R S, LIU L, et al. Hydrothermal synthesis of
Materials, 2016, 26(9): 1330-1337. MnV 2O 6 nanobelts and its application in lithium-ion battery[J].
[7] YAN C S, CHEN G, SUN J X, et al. Edge dislocation surface Materials Letters, 2014, 124: 57-60.
modification: A new and efficient strategy for realizing outstanding [23] DING D R, ZHANG Y J, LI G, et al. 2D Manganese vanadate
lithium storage performance[J]. Nano Energy, 2015, 15: 558-566. nanoflakes as high-performance anode for lithium-ion batteries[J].
[8] ZHANG D J, ZHANG J C, YUAN B Q, et al. Facile synthesis of 3D Chemistry-An Asian Journal, 2014, 9: 1265-1269.
porous Co 3V 2O 8 nanoroses and 2D NiCo 2V 2O 8 nanoplates with high [24] CHAI H, WANG Y C, FANG Y C, et al. Low-cost synthesis of
performance surpercapacitor and electrocatalytic oxygen evolution hierarchical Co 3V 2O 8 microsphere as high-performance anode